An acquisitional view on Germanic finite verb agreement *

Abstract
The acquisition of verbal φ-agreement is not possible until the language acquisition procedure has established the relation between subject and predicate by means of grammatical properties {phrasal structure, the categories V^o and D^o, $D\varphi$, $V^{+finite}$}. The present paper shows how this implies a hierarchy of morpho-syntactic acquisition steps that is manifest in the longitudinal graphs of child language development. The subsequent distributional variation of the finite φ-agreement forms (in root questions, in subordinates, and in there-insertion) supports the thesis (Zwart 1993: 373, to appear, Neeleman and Van de Koot 2002) that verbal φ-agreement marks the relation between two phrases, a subject phrase and a predicate phrase, rather than marking the relation between a specifier and the head of its associated predicate sister. The acquisitional analysis is generalized over West-Germanic and North-Germanic V-second grammars. It leads to the position that Germanic finite verb agreement marks a verbal chain with no more than two positions, a single V^o/I^o inside the predicate phrase and a single position C^o outside the subject-predicate construction. No separate in between position I^o (for example AgrS) is needed or even learnable. This recaptures from an acquisitional point of view the thesis in Weerman (1989).

Keywords: acquisition; verbal agreement; V-second triggers; subordinates

1 Subject-verb agreement

Verbal subject agreement is language-specific. According to an estimate in Bybee (1985: 30-31), half of the world's languages spell out subject φ-properties in morphological variants of the predicative head. The verbal agreement forms themselves are of course language-specific as well. The language acquisition procedure must figure out what agreement relations there are and how they fit into the right syntactic context. The ‘right context’ must stand for a fairly advanced language-specific frame. A child that can spot verbal φ-agreement in its appropriate context is able to focus in on a structure with the properties in (1).

(1) a. some canonical PF observable subject-predicate structure form (EPP)
 b. a predicate head of a category identifiable as V ($verbal$ $chain$)
 c. a set of subject φ-features {number, person, (gender)} (φ-agreement)

The distinctions in (1), {binary X-bar structure, category labels for parts of speech, and φ-features}, have all excellent credentials for UG status. The preliminary structure in (2) may support the acquisition of verbal φ-agreement, be it only when the various UG factors are known in their language-specific implementation. This implies that all factors in (1) must have gone through preceding acquisition procedures. Consider diagram (2).

* The research for this paper was supported by NWO (grant 355-70-009).
The functional labels {utterance, topic, comment} in (2) are provisional labels in early child language. As soon as the grammatical markings for predicate and argument (<+finite> and D°) have been acquired, it is possible to define predicate and subject by means of grammatical marking. The φ-features of D° {person, number, definiteness} appear only when the acquisition of D°-marking, that is the appearance of determiners in obligatory contexts, is itself nearly complete. The verbal φ-agreement follows thereafter. This acquisition order is given in (3).

(3) <+finite> marking > D° > D°φ > verbal φ-agreement

There is clear empirical evidence for this acquisition order. It is a point of theoretical interest that verbal φ-agreement is not learned until predicates are systematically marked by a default form V°<+finite> that suffices to determine its opposition to infinitives and participles (Van Kampen 2006b and references there). As commonly assumed, the default <+finite> is a third person singular (Benveniste 1966: 228ff, 255f).

2 The verbal paradigm

Child language reveals the order of acquisition steps in (3). The evidence given here is recorded from the Dutch child Sarah (CHILDES, Van Kampen corpus), but it should hold for other V-second languages as well. Productive child language starts with a radical and systematic reduction of the maternal input. All functional categories are left out. The utterances that remain consist of two denotational elements. They relate pragmatically as topic-comment {beer — slapen}/ {dat — beer} (‘bear sleep’/‘that bear’), or as operator-comment {moet — slapen}/ {ga — weg}/ {wil — auto} (‘must sleep’/’go away’/’wanna car’). Part of these utterances has been discussed as ‘optional infinitives’ in Wexler (1998), but the source is the systematic reduction in all the functional categories.

The first functional categories that are added in early child language are those that mark the comment part. I will call these markings <+finite> marking. The topic subject element is an option in early child language, but the rise of comment marking by means of a <+finite> {copula, modal, auxiliary} runs parallel with the rise in the use of a topic subject. Transitive structures in the comment look like a kind of compounds {moet [pap-eten]}/ {moet [weg-gaan]}/ {moet [stoel-klimmen]} (‘must eat-porridge/go-away/ climb-chair’) (Van Kampen 1997). They maintain the complement-head order that is dominant in the (Dutch) input. Denotational elements remain in the comment (sentence) final position as in the examples in (4).
Denotational finite verbs are present in the maternal input (some 30%), and they are in sentence initial C0-position, but they appear only marginally in productive child language at this stage (8\% versus 92\% (semi-) auxiliaries: Evers and van Kampen 2001).1

When somewhat more than 60\% of the predicates/comments is marked by grammatical (semi-)auxiliary material, denotational elements with finite morphology begin to appear more regularly (some 15\%) in predicate/comment initial position as in the examples in (5)

(5) a. beertje slaap(t) (bear sleep+finite)
 b. jij zet liedje aan (you put+finite song on)

At that stage, there are three parallel comment/predicate types, see (5).

(6) a. illocution operator — comment [denotational]
 b. topic-<finite aux> — comment [denotational]
 c. topic-<finite denotational> — comment [with denotational gap]

The construction in (6)b might be a distributional variant of (6)a or of (6)c.

The use of finite denotational verbs with a gap in the comment, predicate type (6)c, rises within 3 months, between week 110-123, to an adult level of 30\%. Nearly all predicates/comments are eventually grammatically marked. The grammatical marking implies the presence of an ‘aboutness’ topic. The topic is at first represented by means of a demonstrative or noun used as quasi-name. Determiners or finite verb \(\phi\)-agreement are not present yet. One may nevertheless speculate that the systematic presence of a grammatically marked comment represents the realization of predication, including the predicate’s EPP function (subject obligation), see Van Kampen (2006a). The set in (6)a is marked by operator forms, e.g. \textit{wil} (‘wanna’), \textit{moet} (‘must’), \textit{is} (‘is’), \textit{kom} (‘come’), that are already present in the two-word utterances. They still lack an explicit subject, but they can nevertheless claimed to be subject-oriented. They have a mode-implied subject fixed to a specific person. Like the imperative in the adult language, the ‘mode-implied’ predicate in early child language is a root phenomenon with an illocution-fixed person, \textit{wil} (‘wanna’) is always first person, like \textit{kannie} (‘cannot’), \textit{moet} is typically third person (‘it must be that’).

(7) a. moet a(lle)maal eten, vogeltjes Sarah week 123
 must all eat, birdies \textit{moet} is typically \textit{it must be that}
 b. (ik) kannie zien Sarah week 122
 (I) cannot see \textit{kannie} is typically 1st pers. (agent) \textit{cannot}

1 Evers and Van Kampen (2001) show that without a substantial percentage of auxiliaries/modals in the input (>60\%), a V-second language would not be learnable, which then would lead to a historical change.
The rising percentage of <+finite> marking in the speech of the child can be translated into a longitudinal graph. The <+finite> graph in Dutch child language has the properties in (8).2

(8) Properties of the <+finite> graph
 a. <+finite> marking reaches near adult level in less than half a year, after its irreversible rise in \(\geq \) two-word utterances.
 b. <+finite> marking turns the subject topic from an option into a near obligation that can be interpreted as the EPP.
 c. <+finite> marking precedes the marking of arguments for articles and \(\varphi \)-features.

The graphs in (9) below illustrate the statements in (8). They have been constructed from the files of Sarah. They are the <+finite> graph (A) for the rising percentage of finite verbs and the D\(^0\)-graph (B) for the rising percentage of D\(^0\)-marked arguments. The subsequent acquisition of <+number> for DPs, followed by number agreement on the finite verb is reflected in table (10).

(9) Dutch Sarah: <+finite> marking and D\(^0\)-marking (Van Kampen 2004b)

<table>
<thead>
<tr>
<th>age in weeks</th>
<th>130-135</th>
<th>140-142</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ plural subjects</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>*- agr</td>
<td>*7</td>
<td>*0</td>
</tr>
<tr>
<td>+ agr</td>
<td>5</td>
<td>13</td>
</tr>
</tbody>
</table>

The rise of the D\(^0\)-graph sets in at week 120 and climbs in somewhat more than half a year over the 80% line. Plural DPs appear halfway and there are immediate, be it confused, attempts to have agreement on the finite verb. The verbal \(\varphi \)-agreement must be well learnable, since ten weeks later mistakes in plural agreement become marginal. An example at week 130 is given in (11)a and an example at week 140 is given in (11)b.

2 The graph for <+finite> marking by predicates was introduced as the I\(^0\)-graph in previous work (Van Kampen 2004b, 2006a). It marks the acquisition of V-second up to the adult level. The acquisition point is the point at which the child is within 10% of the adult norm. Adult Dutch realizes V-second in 90% of the sentences. The remaining sentences are basically ‘root infinitives’ like *een boek lezen* (‘read a book’), *even de afwas doen* (‘doing the dishes in a jiffy’). These are standard ways to answer questions in conversations.
The first two requirements for the learnability of verbal φ-agreement, stated in (1)a and (1)b, are being met during the rise of the $\langle+$finite\rangle graph. The subsequent D'-graph realizes the φ-features mentioned in (1)c.

The requirement of an EPP subject-predicate marking with a PF observable structure in (1)a has been given by the V-second rule in the $\langle+$finite\rangle graph. Between week 110-123, 90% of the V-second (non-question) constructions still have the subject and the finite verb in a fixed specifier-head configuration. The constructions with a mode-implied subject, exemplified in (7), have been left out of this count. The other 10% are utterances with subject-drop in Spec,C. This percentage is not unlike the percentage of subject-drop in adult Dutch.3

Non-subject elements in fronted topic position are highly marginal in early child language (i.e. before the completion of the D-graph). A fixed subject-predicate configuration, requirement (1)a, is realized by all the constructions that build up the finite graph in (9) minus the constructions with a mode-implied subject moet eten (‘must eat’) kannie zien (‘cannot see’). See the structure in (12).

\[
\text{(12) } \quad \text{CP/IP} \\
\quad \text{Spec} \quad \text{subject} \\
\quad \text{CP/IP} \\
\quad \text{C}^0/\text{I}^0 \\
\quad \langle+$finite$\rangle \\
\quad \text{VP/IP} \\
\quad \text{t$\langle+$finite\rangle}
\]

3 The full construction in (12) is an IP in as far as it realizes the EPP configuration. It will soon serve to figure out the verbal φ-agreement. The full construction (12) may also be analyzed as an illocutionary construction with a subject in the Spec,C topic/subject position. V$\langle+$finite\rangle appears in the highest head position of the root, also known as the hang-out position for the illocutionary operator in the operator-comment construction (5)a. Suppose this is the real attractor: (illocutionary) Force labeled C'. So far, so good. If one feels that adult Dutch should make in addition a distinction between CP and IP, one expects an additional acquisition step that will force the acquisition device to install the CP/IP distinction. Evidence for the CP/IP distinction must be inversion of the subject and its finite φ-agreement verb [XP-topic – $V\varphi$agr – DP subject – I' etc..]. That evidence is not present before the acquisition of the V-second rule. For that reason, - lack of evidence -, Clahsen (1991) proposed a temporary category FP, neutral between CP and IP. Below, I will develop a different approach. I will argue that the immediate PF evidence from V-second imposes a position tV$\langle+$finite\rangle inside the VP. The PF evidence also imposes a position V$\langle+$finite\rangle outside of the denotational predicate phrase and left of negation. Is it now possible to for verbal φ-agreement to yield evidence for an additional position I'? Certainly not. At this time and moment (after the acquisition of V-second), the structure is already quite rich. There is a φ-chain [V$\langle+$fin\rangle – tV$\langle+$finite\rangle]. Verbal φ-agreement can very well be determined by that chain, explaining the positional flexibility of the subject that will soon enter the system. In other words, it is due to the earliness of the verbal chain C'φ-V' that evidence for a separate position I' will never be forthcoming from V-second languages.

4 In the Sarah files between weeks 110-123, I counted only 3 out of 101 examples with a non-subject topic.
Requirement (1)b asked for a predicate head identifiable as V. The set of <+finite> marking in Dutch has the forms given in (11)a, (11)b, and (11)c. The class of denotational elements that has entrance to all <+finite> marked constructions is the class of Verbs.

\((13)\) \(X^0 = V\) when it may enter the <+finite> contexts

- a. Modal\(<+finite>\) … \([\text{infinitive}]_{VP}\)
- b. Aux\(<+finite>\) … … \([\text{past participle}]_{VP}\)
- c. V\(<+finite>\) … \([tV_{<+finite>}]_{VP}\)

The <+finite> forms are de facto preceded by a potential topic subject. The acquisition frames for <+finite> marking in root clauses coincides with the acquisition frame for the category V. The Dutch modals and auxiliaries allow infinitival and participial variants. By consequence, they eventually join the class V. The basic contention of (13) is as old as the study of grammar itself. It says that an element is V by virtue of fitting into the verbal paradigm. The grammatical markings that constitute the <+finite> graph for the period week 110-123 in (9) above divide over the variants (13)a, (13)b and (13)c as 59%, 11% and 30% respectively (leaving out the mode-implied predicates). Hence, the whole paradigm is in function during the rise of <+finite> marking. There is no difference between the acquisition of predication, the acquisition of the EPP principle, and the acquisition of the <+finite>/V\(^o\) paradigm.

The category V is a shorthand notation for those denotational items that have access to the a-b-c set of <+finite> frames in (13), see (14).

\((14)\) \(V^o = \text{denotational } X^o \ [\text{in } <+finite> \text{ constructions } \{a, b, c\} \ldots \ldots]\)

The option set \(\{a, b, c\}\) represents the general lay out of the (Dutch) verbal paradigm. It is an entity that functions as the standard lexical frame and the one that was indicated by Williams (1994: 23) as the (meta-)'paradigmatic information'. The formula in (14) is relevant to all verbs in the lexicon, the regular varieties as well as the irregular and suppletive forms. The irregular forms have to be identified as equivalent to a part of the full paradigm. They block their regular counterparts due to input pressure. As soon as the irregular forms fall below a certain frequency, the blocking procedure fails to be effective and the regular forms take over again (Van Kampen 2004a). Blocking represents a constant tension between the meta-paradigm and the input.

The frame in (13)/(14) does not mention verbal \(\varphi\)-agreement, requirement (1)c. From an acquisitional point of view, it is important to stress that the <+finite> V\(^o\) system has already been established at the beginning of the 110-123 week period, i.e. when the <+finite> graph is at some 60% (the ‘Blom point’; see Blom 2003: 215). Both grammatical properties, V <+finite> and its C\(^o\) position, are established when the <+finite> graph flattens off at week 123. The verbal \(\varphi\)-agreement comes in twenty (!) weeks later, at week 142. This characterizes verbal \(\varphi\)-agreement as a peripheral phenomenon, at least in Dutch, but probably more general in all Germanic V-second grammars as we will see now.\(^5\)

\(^5\) The relatively late acquisition of verbal \(\varphi\)-agreement had already been noticed for person agreement in
3 The V<+finite, +agreement> chain

The <+finite> graph represents the growing percentage of finite verbs. The term <+finite> is preferred over the semantic term <+tense> here. The reason is that early child language does not apply the opposition present/past yet. In the files of Sarah, the first past tense and the first perfect tense appears at week 123, right after she acquired <+finite> marking. The syntactic factor <+finite> is much better definable for early child language. It covers all comment/predicate marking that involves the obligatory presence of the aboutness topic subject. The factor <+finite> can be defined as the grammatical marking that defines a predicate and implies as well the obligation of a spelled-out subject. As stated in section 2, a Spec,C subject is present in 90% in the higher segment of the <+finite> graph.

\[
\text{(15) CP/IP} \quad \text{Spec} \quad \Leftrightarrow \quad \text{CP <+finite> subject C} \quad \text{co} \quad <+finite\text{-Neg rest of predicate phrase}}
\]

Modal verbs may still leave out the implied subject when they appear in their function as pragmatic operators for intention, wish, or obligation. Later on, the pragmatic operators will assimilate to the subject-predicate construction by the insertion of first, second and third person pronouns, see van Kampen (2006b).

The structure (15) maintains a high >90% corpus presence for the next half year. For that reason, it offers an excellent frame to acquire verbal \(\psi\)-agreement as soon as the subject phrase gets D-marked and introduces <+plural> expressions. The surface phenomenon of <+finite, +number agreement> does not immediately betray how the agreement rule is acquired. One might think about a specifier-head relation in a fixed configuration, but it also possible to see the <+finite> marking as having scope over the predicate phrase and present in the CP label. In the latter case, subject and predicate are sisters. It will turn out that this is by far the better choice when we look at the acquisition facts.

In subordinates, West-Germanic V-second grammars never bring the <± finite> verb in a predicate-initial position. All denotational verbs are acquired in the predicate final position of (5)a,b. Now I come to a crucial point. Because acquisition steps are irreversible, verbs will continue to relate to the predicate final position simply due to the force of the lexicon insertion frames by which they were introduced into the grammar. These “----V]VP” frames continue to be reinforced by each perception or production of a clause in the early child grammar. Eventually, the <+finite> form appears predicate-final in the subordinate, see the structures in (16)d.

German by Claehsen (1991). Late acquisition of verbal \(\psi\)-agreement also holds for Romance pro-drop languages (Van Kampen 2004b, 2006b, Avram and Coene 2004).
The language acquisition procedure that establishes the V-second rule is manifest in (16)a,b,c. It took Sarah some 20 weeks (see the graph in (9)) and probably some six-digit number of short input sentences (Briscoe 2000) to get the (16)a,b,c pattern. The structure of finite subordinate (16)d seems to contradict all that has been just acquired about the position of <+finite> elements (second position left of Neg versus predicate final). Moreover, finite subordinate clauses are no more than some 2% of the input (Evers and Van Kampen 2001). Hence (16)d must appear as nearly unlearnable, but as often the facts insult common sense. Sarah’s first subordinate clauses appear in week 135 and seem to offer no problem as to the verbal positions.6

Let us now assume that the language acquisition procedure conceives of subject ϕ-agreement as a feature checking between sister constituents, the subject being the left-hand sister and the predicate being the right-hand sister, following in this respect Zwart (1993, to appear), Neeleman and Van de Koot (2003). When the predicate sister is invariably marked by a verbal gap <+finite>, it follows that the verbal ϕ-agreement remains a matter of hooking up the subject to the verbal chain. No matter which higher position the <+finite> head of that chain may further raise into. The advantage of the sister matching and head trace appears immediately. The language acquisition procedure has neither a problem with subordinates nor with subject-inversion. In root wh-questions and in root yes/no questions the finite verb remains in first or second position, whereas the subject will appear to the right of the finite form.

The language acquisition procedure that establishes the V-second rule is manifest in (16)a,b,c. It took Sarah some 20 weeks (see the graph in (9)) and probably some six-digit number of short input sentences (Briscoe 2000) to get the (16)a,b,c pattern. The structure of finite subordinate (16)d seems to contradict all that has been just acquired about the position of <+finite> elements (second position left of Neg versus predicate final). Moreover, finite subordinate clauses are no more than some 2% of the input (Evers and Van Kampen 2001). Hence (16)d must appear as nearly unlearnable, but as often the facts insult common sense. Sarah’s first subordinate clauses appear in week 135 and seem to offer no problem as to the verbal positions.6

Let us now assume that the language acquisition procedure conceives of subject ϕ-agreement as a feature checking between sister constituents, the subject being the left-hand sister and the predicate being the right-hand sister, following in this respect Zwart (1993, to appear), Neeleman and Van de Koot (2003). When the predicate sister is invariably marked by a verbal gap <+finite>, it follows that the verbal ϕ-agreement remains a matter of hooking up the subject to the verbal chain. No matter which higher position the <+finite> head of that chain may further raise into. The advantage of the sister matching and head trace appears immediately. The language acquisition procedure has neither a problem with subordinates nor with subject-inversion. In root wh-questions and in root yes/no questions the finite verb remains in first or second position, whereas the subject will appear to the right of the finite form.

It may be noted that speakers of English that try to master Dutch after puberty, seldom if ever succeed to master the predicate-final positions of the finite verb in spontaneous speech.
Subject-inversion is also present under there-insertion for indefinite subjects (18)a, and in the frequent use of ‘narrative inversion’ (18)b and more marginally in cases of (stressed) non-subject proposing (18)c.

(18) a. d’r parkeerde iemand [een auto tV<+fin>] <IP/VP>
 there parked someone a car

b. nu gaat de vader [een auto parkeren tV<+fin>] <IP/VP>
 now goes the father a car park

c. dié auto parkeerde de vader [in zijn achtertuin tV<+fin>] <IP/VP>
 that car parked the father in his backyard

For all these cases, the subject remains in sister position with the IP/VP-predicate. The subject’s predicate sister merits the qualification IP/VP, because it will contain the empty place tV<+fin> that is related to the C° in the V-second position. The subordinate clause with the finite verb in predicate-final position and the constructions with finite verb-subject inversion are so well learnable, because these constructions are far more simple than is assumed in generative grammars that stipulate a separate configuration based on a functional category AgrS (subject-agreement), or for that matter any other functional I° category except C°<+tense>. It is of course possible to stipulate such an in between category as a grammatical a priori, see for example Koeneman (2000), but just because subject-agreement/AgrS is stipulated as an a priori, it fails to explain the dependency of verbal φ-agreement on previous acquisition steps. All denotational verbs are acquired at first in a predicate-final frame. This frame appears in child language by leaving out auxiliaries and modals (the so-called ‘optional infinitive’ period). The auxiliaries and modals are systematically added in the first part of the <+finite> graph and the <+finite> denotational verbs follow, see Evers and Van Kampen (2001) and Blom (2003). The denotational verbs leave a gap in the predicate for a lexically specified position establishing the theta-frame.

One may describe the repositioning of the finite verb in the clause second position as a movement, but notice that this is not necessary. When the predicate contains (for reasons of theta/agreement frames) an empty position tV<+finite>, the subject remains well-defined as the sister of the IP/VP predicate. I assume now that the language acquisition procedure simply continues to consider grammar as combining feature-qualified sister labels. The predicate that contains the gap marked as <+finite> continues to function as IP/VP. The fact that the Germanic finite verb in roots reappears in C° is unlikely to be related to a separate I° configuration for the subject-predicate relation. That relation is already well-defined by the sister constituents DP<subject> and IP/VP<finite predicate>. The finite head in the position C° picks up discourse functions, such as the illocutionary scope of the utterance and the definition of the aboutness topic in Spec,C. That aboutness topic is unstressed and presupposed for subjects in Spec,C and stressed as a topic change for non-subject arguments.7 The topic-dummy ‘er’ is used when the subject is indefinite and cannot be used for that reason as a presupposed topic.

7 I leave aside the cases of narrative inversion, as in (nu) gaan we een boekje lezen (‘(now) go we a booklet read’), which is a commonly used option in the informal use of V-second languages. Narrative inversion is characterized by an unstressed dummy topic-adverb (dus/dan/toen/nu ‘so’/’then’/’now’) that can easily be left out, resulting in V-first. See for a detailed study of narrative inversion in Swedish Mörnsjö (2002).
4. Subordinates

The conclusion of the previous section was that the position l^o is predicate final and (assuming a $tv_{<\text{finite}>}$) need not to be distinguished from the predicate final position v^o. The conclusion follows by constraining the language acquisition procedure to grammatical relations that hold only between sister constituents as proposed in Zwart (1993, to appear) and in Neeleman and Van de Koot (2002). Within the present acquisitional point of view, it explains the order of acquisition steps in (19).

(19) (i) V-second/c^o (including the $tv_{<\text{finite}>}$) > (ii) d^o > (iii) $d\phi$ > (iv) $v\phi$

The analysis recaptures from an acquisitional point of view the contention in Weerman (1989) and Haider (2005) that West-Germanic grammar (except English) can do without a position l^o.

It has often been claimed that Icelandic and Yiddish and also the Mainland Scandinavian languages offer evidence for a distinction between verbal positions c^o, l^o and v^o. Yiddish and North Germanic must or may apply V-second of the finite verb in the subordinate clause. These subordinates also allow, as in root clauses, inversion of finite verb and subject. The reasoning may now go this way. When the root clause is better described without reference to a position l^o, this must also hold for the same pattern in Scandinavian subordinates. See also Vikner (1994: 131) and Koeneman (2000: 120), who both explicitly state that there are no differences in verbal placement between embedded and main clauses in Icelandic, as in (20).

(20) Icelandic/Yiddish (all matrix verbs);
Mainland Scandinavian (optional and only bridge verbs)

\[
\begin{align*}
\text{a. (compl.) topic} & \quad tv_{<\text{fin}>} \quad \text{subject} \quad \text{[adverb [tv_{<\text{fin}>}\text{object }]}-\text{IP/VP}] \\
\text{b. (compl.) subject} & \quad tv_{<\text{fin}>} \quad \text{[adverb [tv_{<\text{fin}>}\text{object }]}-\text{IP/VP}] \\
\end{align*}
\]

A mechanism that blocks V-second in the West-Germanic subordinates seems simple enough. Let us assume that the finite verb in West Germanic and in North Germanic contains a feature $<+C>$. This is reasonable from an acquisitional point of view, since the finite verbs in all these languages are learned as illocutionary utterance heads. The $<+C>$ factor is deactivated in subordinates that are headed by a complementizer $<+C, +\text{finite}>$. The only thing we need to assume now is that the complementizers in North Germanic and Yiddish lack (sometimes or always) a complementizer with this $<+\text{finite}>$ feature. By consequence, the $<+C>$ in the finite verb remains (sometimes or always) active and moves to the first position that takes scope over the subject-predicate constituent IP/VP.

There are two potential correlates. The West-Germanic complementizer $<+C, +\text{finite}>$ heads a $<+\text{finite}>$ chain. Within this chain it deactivates the $<+C>$ in the West-Germanic finite verb. As head of a $<+\text{finite}>$ chain, it may well spell out $<+\text{agreement}>$. This does indeed happen in various West-Germanic dialects, for example in Haegeman’s (1992) West Flemish. The counterpart is that the North-Germanic dialects should not tolerate complementizer agreement in subordinate V-second contexts, and that Icelandic and
Yiddish should not tolerate complementizer agreement ever, since by assumption the typical old fashioned North-Germanic complementizer contains no <+finite> factor and will not deactivate the <+C> factor in the finite verb. Hence, it causes V-second in subordinates.

I do not know whether this prediction fits the Scandinavian dialects, but Zwart (1993: 198) mentions a curious fact. West-Germanic Frisian exhibits complementizer agreement, but Frisian also allows V-second in a subset of subordinates. Exactly for this quasi North-Germanic subset complementizer agreement is blocked, although the complementizer itself is the same word, see (21).

(21) a. datst do soks net leauwe moast
 that<+agr> you such things not believe should

b. dat/*datst do moast soks net leauwe
 that/*that<+agr> you should such things not believe

The otherwise strange coincidence seems to support my analysis of a C<+finite>/<+agr> and C<−finite>/<−agr>.8

A second correlate is that the complementizer <+C, +finite> may fail to cause a that-trace filter, which is the case in my Dutch. The expectation is now that the Scandinavian <+C> must represent a clear that-trace effect. This prediction fails in Icelandic for some reason (Maling and Zaenen 1981), but it holds for other North-Germanic grammars and Yiddish.

All of this does not support conjectures (Platzack and Holmberg 1989, Koeneman 2000) that the North-Germanic verb movements in subordinates may relate to a former or present rich agreement of the V<+finite>. The irrelevance of verbal ϕ-agreement for V-second is well compatible with the major facts. German verbal agreement is rich, whereas Dutch verbal agreement is poor. Both resist V-second in subordinates. Icelandic verbal agreement is rich and its Danish counterpart is as poor as it can be, but both allow V-second in subordinates.

By the present analysis verbal ϕ-agreement cannot be related to the acquisition of the verbal chain C^0-V^0 at all. It is clear that the acquisition of the verbal chain precedes the acquisition of subject-agreement. The establishment of the $C^0-V^0/<+finite>$ chain is the first major step in the acquisition of all Germanic V-second grammars. This early acquisition step establishes the presence within the predicate of $v_{V<+finite>}$. The variation between ± V-second in subordinates is easily learnable from input. When the language acquisition device is confronted with subordinates that realize the V-second chain, it will not attribute to the complementizer the rule-blocking feature <+C>. When the language acquisition device is confronted with input that does not realize the V-second chain in subordinates, it will reconstruct that chain by attributing the factor <+C> to the highest head in the subordinate. At first, the child starts all its subordinates by leaving out the complementizer (Krikhaar 1992), confirming the general strategy that functional categories are left out until their context has been figured out grammatically. It seems unlikely that the structure of subordinates could be different unless by some different

8 Possibly, Zwart (1993) makes the same point. Due to his rather different theoretical framework, I couldn’t figure that out. A different analysis of the same observation is given in Ackema and Neeleman (2004: 243).
value in C^o. So all seems to be arranged for making the acquisition of the complementizer features relevant and the acquisition of the agreement features irrelevant.

Differences between root and non-root clauses have been understood as additions for the root structure as in Emonds ‘root transformations’ (Emonds 1976). The child must start with root clauses. For that reason, non-root clauses must have either the same or a more simplified structure as root clauses. Hence, they are more easily to acquire. This fits the old-fashioned idea that the predicate-final position of the verb is directly given as well as the fact that the subordinate structure is acquired instantaneously.⁹

References

⁹ Schoenenberger (2002) discusses cases of overgeneralization of V-second in subordinates in child Swiss German. These V-second subordinates are overgeneralizations, since Swiss German applies V-second in subordinate complements of bridge verbs, like Swedish.

