Type Logical Grammar

MICHAEL MOORTGAT
Abstract

CATEGORIAL GRAMMAR: a lexicalized grammar formalism based on logical type-theory. A categorial lexicon assigns one or more types to the atomic elements of a language; the assembly of form and meaning is accounted for in terms of the rules of inference for these types seen as formulas of a grammar logic. Cross-linguistic variation results from extending the invariant core of the grammar logic with facilities for structural reasoning.

Contents

1. **Background reading** ... 5
2. **Grammar development tools** 6
3. **Constants and structural variation** 7
4. **Vocabulary** .. 8
5. **Models** ... 9
6. **Frames for structured expressions** 10
7. **Invariants: the base logic** 11
8. **Natural Deduction format** 12
9. **Natural Deduction (cont’d)** 13
10. **Sample derivation** ... 14
11. **Sample derivation (cont’d)** 15
12. **Illustration: solving type equations** 16
13. **Exercise** ... 17
14. **Exercise** ... 18
15. **Variation: the structural module** 19
16. **Frame constraints** ... 20
17. **Multidimensional composition** 21
| 18 | Exercise | 22 |
| 19 | Complexity issues | 23 |
| 20 | Structural patterns | 24 |
| 21 | Typological motivation | 25 |
| 22 | Comparison | 26 |
1. Background reading
1. Background reading

1. Background reading

1. Background reading

Available from http://www.let.uu.nl/~ctl/docenten/moortgat.html
2. Grammar development tools
2. Grammar development tools

Richard Moot’s GRAIL system:
2. Grammar development tools

Richard Moot’s GRAIL system:

- Proof-net based parser/theorem prover for multimodal type-logical grammars
2. Grammar development tools

Richard Moot’s GRAIL system:

- Proof-net based parser/theorem prover for multimodal type-logical grammars
- GUI with interactive debugger
2. Grammar development tools

Richard Moot’s GRAIL system:

- Proof-net based parser/theorem prover for multimodal type-logical grammars
- GUI with interactive debugger
- Web access via dynamic pdf documents (cf Mathematica notebooks)
2. Grammar development tools

Richard Moot’s GRAIL system:

- Proof-net based parser/theorem prover for multimodal type-logical grammars
- GUI with interactive debugger
- Web access via dynamic pdf documents (cf Mathematica notebooks)

2. Grammar development tools

Richard Moot’s GRAIL system:

► Proof-net based parser/theorem prover for multimodal type-logical grammars
► GUI with interactive debugger
► web access via dynamic pdf documents (cf Mathematica notebooks)

2. Grammar development tools

Richard Moot’s GRAIL system:

- Proof-net based parser/theorem prover for multimodal type-logical grammars
- GUI with interactive debugger
- web access via dynamic pdf documents (cf Mathematica notebooks)

Available at http://www.let.uu.nl/~Richard.Moot/personal/grail.html
3. Constants and structural variation
3. **Constants and structural variation**

Basic questions
3. Constants and structural variation

Basic questions

- What are the grammatical INVARIANTS — universal aspects of the assembly of form and meaning;
3. **Constants and structural variation**

Basic questions

- What are the grammatical **INVARIANTS** — universal aspects of the assembly of form and meaning;

- How does one reconcile the idea of invariants with structural **VARIATION** — different realizations of the form/meaning correspondence across languages.
3. Constants and structural variation

Basic questions

What are the grammatical INVARİANTS — universal aspects of the assembly of form and meaning;

How does one reconcile the idea of invariants with structural VARIATION — different realizations of the form/meaning correspondence across languages.

Grammatical architecture
3. Constants and structural variation

Basic questions

▸ What are the grammatical INVARIANTS — universal aspects of the assembly of form and meaning;

▸ How does one reconcile the idea of invariants with structural VARIATION — different realizations of the form/meaning correspondence across languages.

Grammatical architecture

▸ INVARIANTS: base logic
3. Constants and structural variation

Basic questions

- What are the grammatical INVARIANTS — universal aspects of the assembly of form and meaning;

- How does one reconcile the idea of invariants with structural VARIATION — different realizations of the form/meaning correspondence across languages.

Grammatical architecture

- INVARIANTS: base logic

- VARIATION: structural module
3. Constants and structural variation

Basic questions

▶ What are the grammatical INVARIANTS — universal aspects of the assembly of form and meaning;

▶ How does one reconcile the idea of invariants with structural VARIATION — different realizations of the form/meaning correspondence across languages.

Grammatical architecture

▶ INVARIANTS: base logic

▶ VARIATION: structural module

▶ CONTROL: features licensing/constraining structural operations
4. Vocabulary

FORMULAS

STRUCTURES
4. Vocabulary

\[\mathcal{F} ::= \quad \mathcal{A} \]
\[\diamondsuit \mathcal{F} \]
\[\Box \mathcal{F} \]
\[\mathcal{F} \cdot \mathcal{F} \]
\[\mathcal{F} / \mathcal{F} \]
\[\mathcal{F} \setminus \mathcal{F} \]
4. Vocabulary

\[\mathcal{F} ::= \mathcal{A} \quad \text{atoms} \]
\[\Diamond \mathcal{F} \]
\[\Box \mathcal{F} \]
\[\mathcal{F} \cdot \mathcal{F} \]
\[\mathcal{F} / \mathcal{F} \]
\[\mathcal{F} \backslash \mathcal{F} \]
4. Vocabulary

\[F ::= A \]
\[\diamond F \]
\[\Box F \]
\[F \cdot F \] composition
\[F / F \]
\[F \setminus F \]

atoms
4. Vocabulary

<table>
<thead>
<tr>
<th>FORMULAS</th>
<th>STRUCTURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathcal{F} ::= \mathcal{A}$</td>
<td>atoms</td>
</tr>
<tr>
<td>$\Diamond \mathcal{F}$</td>
<td></td>
</tr>
<tr>
<td>$\Box \mathcal{F}$</td>
<td></td>
</tr>
<tr>
<td>$\mathcal{F} \circ \mathcal{F}$</td>
<td>composition</td>
</tr>
<tr>
<td>$\mathcal{F} / \mathcal{F}$</td>
<td>select right</td>
</tr>
<tr>
<td>$\mathcal{F} \setminus \mathcal{F}$</td>
<td>select left</td>
</tr>
</tbody>
</table>
4. Vocabulary

<table>
<thead>
<tr>
<th>FORMULAS</th>
<th>STRUCTURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathcal{F} ::=</td>
<td>\mathcal{A} atoms</td>
</tr>
<tr>
<td>$\Diamond \mathcal{F}$</td>
<td>feature checking</td>
</tr>
<tr>
<td>$\Box \mathcal{F}$</td>
<td>composition</td>
</tr>
<tr>
<td>$\mathcal{F} \bullet \mathcal{F}$</td>
<td>select right</td>
</tr>
<tr>
<td>$\mathcal{F} / \mathcal{F}$</td>
<td>select left</td>
</tr>
<tr>
<td>$\mathcal{F} \setminus \mathcal{F}$</td>
<td></td>
</tr>
</tbody>
</table>
4. Vocabulary

\[
\mathcal{F} ::= \mathcal{A} \quad \text{atoms}
\]
\[
\Diamond \mathcal{F} \quad \text{feature checking}
\]
\[
\Box \mathcal{F} \quad \text{feature request}
\]
\[
\mathcal{F} \cdot \mathcal{F} \quad \text{composition}
\]
\[
\mathcal{F} / \mathcal{F} \quad \text{select right}
\]
\[
\mathcal{F} \backslash \mathcal{F} \quad \text{select left}
\]
4. Vocabulary

<table>
<thead>
<tr>
<th>FORMULAS</th>
<th>STRUCTURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathcal{F} ::=</td>
<td>S ::=</td>
</tr>
<tr>
<td>\mathcal{A}</td>
<td>\mathcal{F}</td>
</tr>
<tr>
<td>$\diamondsuit \mathcal{F}$</td>
<td>$\langle S \rangle$</td>
</tr>
<tr>
<td>$\square \mathcal{F}$</td>
<td>feature checking</td>
</tr>
<tr>
<td>$\mathcal{F} \bullet \mathcal{F}$</td>
<td>feature request</td>
</tr>
<tr>
<td>$\mathcal{F} / \mathcal{F}$</td>
<td>composition</td>
</tr>
<tr>
<td>$\mathcal{F} \setminus \mathcal{F}$</td>
<td>select right</td>
</tr>
<tr>
<td></td>
<td>select left</td>
</tr>
<tr>
<td></td>
<td>$S \circ S$</td>
</tr>
</tbody>
</table>
5. Models
5. Models

Frames $F = \langle W, R^2_\Diamond, R^3_\bullet \rangle$
5. Models

Frames $F = \langle W, R^2, R^3 \rangle$

W: ‘signs’, resources, expressions
5. Models

Frames \(F = \langle W, R^2, R^3 \rangle \)

- \(W \): ‘signs’, resources, expressions
- \(R^3 \): ‘Merge’, grammatical composition
5. Models

Frames $F = \langle W, R^2, R^3 \rangle$

W: ‘signs’, resources, expressions

R^3: ‘Merge’, grammatical composition

R^2: ‘feature checking’, structural control
5. Models

Frames $F = \langle W, R^2_\Diamond, R^3_\bullet \rangle$

W: ‘signs’, resources, expressions

R^3_\bullet: ‘Merge’, grammatical composition

R^2_\Diamond: ‘feature checking’, structural control

Models $\mathcal{M} = \langle F, V \rangle$
5. Models

Frames $F = \langle W, R^2_\lozenge, R^3_\bullet \rangle$

W: ‘signs’, resources, expressions

R^3_\bullet: ‘Merge’, grammatical composition

R^2_\lozenge: ‘feature checking’, structural control

Models $\mathcal{M} = \langle F, V \rangle$

Valuation $V : \mathcal{F} \mapsto \mathcal{P}(W)$: types as sets of expressions
6. Frames for structured expressions

\[V(A \bullet B) = \{ z \mid \exists x \exists y. R^3 zxy \land x \in V(A) \land y \in V(B) \} \]
6. Frames for structured expressions

\[V(A \bullet B) = \{ z \mid \exists x \exists y. R^3 zxy \land x \in V(A) \land y \in V(B) \} \]

\(z \) expressions that can be disassembled in an \(A \) part \(x \) and a \(B \) part \(y \).
6. Frames for structured expressions

\[V(A \cdot B) = \{ z \mid \exists x \exists y. R^3 zxy \land x \in V(A) \land y \in V(B) \} \]

\(\leadsto \) expressions \(z \) that can be disassembled in an \(A \) part \(x \) and a \(B \) part \(y \).

\[V(\Diamond A) = \{ x \mid \exists y(R^2 xy \land y \in V(A)) \} \]
6. Frames for structured expressions

\[V(A \bullet B) = \{ z | \exists x \exists y. R^3 zxy \& x \in V(A) \& y \in V(B) \} \]

\(\sim \) expressions \(z \) that can be disassembled in an \(A \) part \(x \) and a \(B \) part \(y \).

\[V(\diamond A) = \{ x | \exists y. R^2 xy \& y \in V(A) \} \]

\(\sim \) expressions \(x \) obtained through feature checking from an \(A \) part \(y \).
6. Frames for structured expressions

\[V(A \bullet B) = \{ z \mid \exists x \exists y. R^3 zxy \land x \in V(A) \land y \in V(B) \} \]

\(\rightsquigarrow\) expressions \(z\) that can be disassembled in an \(A\) part \(x\) and a \(B\) part \(y\).

\[V(\Diamond A) = \{ x \mid \exists y. R^2 xy \land y \in V(A) \} \]

\(\rightsquigarrow\) expressions \(x\) obtained through feature checking from an \(A\) part \(y\).

Pairs of opposites. \((\Diamond, \Box), (\bullet, /)\) and \((\bullet, \backslash)\) form residuated pairs (inverse duals).
7. Invariants: the base logic
7. Invariants: the base logic

Type computation. The derivability relation is REFLEXIVE ($A \rightarrow A$) and TRANSITIVE (from $A \rightarrow B$ and $B \rightarrow C$, deduce $A \rightarrow C$).
7. **Invariants: the base logic**

Type computation. The derivability relation is **REFLEXIVE** \((A \rightarrow A)\) and **TRANSITIVE** (from \(A \rightarrow B\) and \(B \rightarrow C\), deduce \(A \rightarrow C\)).

Residuation laws relating pairs of opposites:
7. **Invariants: the base logic**

Type computation. The derivability relation is **REFLEXIVE** \((A \rightarrow A)\) and **TRANSITIVE** (from \(A \rightarrow B\) and \(B \rightarrow C\), deduce \(A \rightarrow C\)).

Residuation laws relating pairs of opposites:

\[
\text{(RES-1)} \quad \diamond A \rightarrow B \quad \text{iff} \quad A \rightarrow \Box B
\]
7. **Invariants: the base logic**

Type computation. The derivability relation is **REFLEXIVE** \((A \rightarrow A) \) and **TRANSITIVE** (from \(A \rightarrow B \) and \(B \rightarrow C \), deduce \(A \rightarrow C \)).

Residuation laws relating pairs of opposites:

\[
\begin{align*}
\text{(RES-1)} & \quad \diamond A \rightarrow B \quad \text{iff} \quad A \rightarrow \Box B \\
\text{(RES-L)} & \quad A \bullet B \rightarrow C \quad \text{iff} \quad A \rightarrow C/B \\
\text{(RES-R)} & \quad A \bullet B \rightarrow C \quad \text{iff} \quad B \rightarrow A\setminus C
\end{align*}
\]
7. **Invariants: the base logic**

Type computation. The derivability relation is **REFLEXIVE** \((A \rightarrow A)\) and **TRANSITIVE** (from \(A \rightarrow B\) and \(B \rightarrow C\), deduce \(A \rightarrow C\)).

Residuation laws relating pairs of opposites:

\[
\begin{align*}
(\text{RES-1}) & \quad \text{\(\text{◊} A \rightarrow B\)} & \text{iff} & & A \rightarrow \square B \\
(\text{RES-L}) & \quad A \bullet B \rightarrow C & \text{iff} & & A \rightarrow C/B \\
(\text{RES-R}) & \quad A \bullet B \rightarrow C & \text{iff} & & B \rightarrow A\backslash C
\end{align*}
\]

Completeness
7. **Invariants: the base logic**

Type computation. The derivability relation is **REFLEXIVE** \((A \rightarrow A)\) and **TRANSITIVE** (from \(A \rightarrow B\) and \(B \rightarrow C\), deduce \(A \rightarrow C\)).

Residuation laws relating pairs of opposites:

\[(\text{RES-1}) \quad \lozenge A \rightarrow B \quad \text{iff} \quad A \rightarrow \Box B\]

\[(\text{RES-L}) \quad A \bullet B \rightarrow C \quad \text{iff} \quad A \rightarrow C/B\]

\[(\text{RES-R}) \quad A \bullet B \rightarrow C \quad \text{iff} \quad B \rightarrow A \setminus C\]

Completeness

\[A \rightarrow B \quad \text{is provable iff} \quad \forall F, V, \ V(A) \subseteq V(B)\]
8. Natural Deduction format
8. Natural Deduction format

Sequents $\Gamma \vdash A$: demonstration that structure Γ has type A.

8. **Natural Deduction format**

Sequents \(\Gamma \vdash A \): demonstration that structure \(\Gamma \) has type \(A \).

Axioms \(A \vdash A \).
8. Natural Deduction format

Sequents $\Gamma \vdash A$: demonstration that structure Γ has type A.

Axioms $A \vdash A$.

Structure-building operations structural counterparts of \diamond, \bullet.
8. Natural Deduction format

Sequents $\Gamma \vdash A$: demonstration that structure Γ has type A.

Axioms $A \vdash A$.

Structure-building operations structural counterparts of ♦,●.

<table>
<thead>
<tr>
<th></th>
<th>unary</th>
<th>binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>formula</td>
<td>♦</td>
<td>●</td>
</tr>
<tr>
<td>structure</td>
<td>⟨·⟩</td>
<td>(· ○ ·)</td>
</tr>
</tbody>
</table>

See the ♦,● Introduction rules:
8. Natural Deduction format

Sequents \(\Gamma \vdash A \): demonstration that structure \(\Gamma \) has type \(A \).

Axioms \(A \vdash A \).

Structure-building operations structural counterparts of \(\diamond, \bullet \).

<table>
<thead>
<tr>
<th></th>
<th>unary</th>
<th>binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>formula</td>
<td>(\diamond)</td>
<td>(\bullet)</td>
</tr>
<tr>
<td>structure</td>
<td>(\langle \cdot \rangle)</td>
<td>(\cdot \circ \cdot)</td>
</tr>
</tbody>
</table>

See the \(\diamond, \bullet \) Introduction rules:

\[\Gamma \vdash A \]
8. Natural Deduction format

Sequents $\Gamma \vdash A$: demonstration that structure Γ has type A.

Axioms $A \vdash A$.

Structure-building operations structural counterparts of \Diamond, \bullet.

<table>
<thead>
<tr>
<th>formula structure</th>
<th>unary</th>
<th>binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>\Diamond</td>
<td></td>
<td>\bullet</td>
</tr>
<tr>
<td>$\langle \cdot \rangle$</td>
<td></td>
<td>$(\cdot \circ \cdot)$</td>
</tr>
</tbody>
</table>

See the \Diamond, \bullet Introduction rules:

$\Gamma \vdash A \ [\Diamond I]$
8. **Natural Deduction format**

Sequents \(\Gamma \vdash A \): demonstration that structure \(\Gamma \) has type \(A \).

Axioms \(A \vdash A \).

Structure-building operations structural counterparts of \(\diamond, \bullet \).

<table>
<thead>
<tr>
<th></th>
<th>unary</th>
<th>binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>formula</td>
<td>(\diamond)</td>
<td>(\bullet)</td>
</tr>
<tr>
<td>structure</td>
<td>(\langle \cdot \rangle)</td>
<td>(\cdot \circ \cdot)</td>
</tr>
</tbody>
</table>

See the \(\diamond, \bullet \) Introduction rules:

\[
\frac{\Gamma \vdash A}{\langle \Gamma \rangle \vdash \diamond A} \quad [\diamond I]
\]
8. **Natural Deduction format**

Sequents $\Gamma \vdash A$: demonstration that structure Γ has type A.

Axioms $A \vdash A$.

Structure-building operations structural counterparts of \diamondsuit, \bullet.

<table>
<thead>
<tr>
<th>Structure</th>
<th>unary</th>
<th>binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>formula</td>
<td>\diamondsuit</td>
<td>\bullet</td>
</tr>
<tr>
<td>structure</td>
<td>$\langle \cdot \rangle$</td>
<td>$(\cdot \circ \cdot)$</td>
</tr>
</tbody>
</table>

See the \diamondsuit, \bullet Introduction rules:

$$
\begin{align*}
\Gamma \vdash A & \quad \Gamma \vdash A \\
\langle \Gamma \rangle \vdash \diamondsuit A & \quad [\diamondsuit I] \\
\end{align*}
$$
8. Natural Deduction format

Sequents $\Gamma \vdash A$: demonstration that structure Γ has type A.

Axioms $A \vdash A$.

Structure-building operations structural counterparts of \diamond, \bullet.

<table>
<thead>
<tr>
<th></th>
<th>unary</th>
<th>binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>formula</td>
<td>\diamond</td>
<td>\bullet</td>
</tr>
<tr>
<td>structure</td>
<td>$\langle \cdot \rangle$</td>
<td>$(\cdot \circ \cdot)$</td>
</tr>
</tbody>
</table>

See the \diamond, \bullet Introduction rules:

\[
\frac{\Gamma \vdash A}{\langle \Gamma \rangle \vdash \diamond A} [\diamond I] \quad \frac{\Gamma \vdash A \quad \Delta \vdash B}{\Gamma \vdash A \quad \Delta \vdash B}
\]
8. **Natural Deduction format**

Sequents $\Gamma \vdash A$: demonstration that structure Γ has type A.

Axioms $A \vdash A$.

Structure-building operations structural counterparts of \Diamond, \bullet.

<table>
<thead>
<tr>
<th></th>
<th>unary</th>
<th>binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>formula</td>
<td>\Diamond</td>
<td>\bullet</td>
</tr>
<tr>
<td>structure</td>
<td>$\langle \cdot \rangle$</td>
<td>$\langle \cdot \cdot \cdot \rangle$</td>
</tr>
</tbody>
</table>

See the \Diamond, \bullet Introduction rules:

$$\frac{\Gamma \vdash A}{\langle \Gamma \rangle \vdash \Diamond A} \quad [\Diamond I] \quad \frac{\Gamma \vdash A \quad \Delta \vdash B}{\langle \cdot \rangle \vdash \langle \cdot \cdot \cdot \rangle \vdash \langle \cdot \cdot \cdot \rangle} \quad [\bullet I]$$
8. **Natural Deduction format**

Sequents $\Gamma \vdash A$: demonstration that structure Γ has type A.

Axioms $A \vdash A$.

Structure-building operations structural counterparts of \Diamond, \bullet.

<table>
<thead>
<tr>
<th>unary</th>
<th>binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>\Diamond</td>
<td>\bullet</td>
</tr>
<tr>
<td>$\langle \cdot \rangle$</td>
<td>$(\cdot \circ \cdot)$</td>
</tr>
</tbody>
</table>

See the \Diamond, \bullet Introduction rules:

\[
\frac{\Gamma \vdash A}{\langle \Gamma \rangle \vdash \Diamond A} [\Diamond I] \quad \frac{\Gamma \vdash A \quad \Delta \vdash B}{\Gamma \circ \Delta \vdash A \bullet B} [\bullet I]
\]
9. Natural Deduction (cont’d)

Slash elimination
9. Natural Deduction (cont’d)

Slash elimination

\[\Gamma \vdash A / B \]
9. Natural Deduction (cont’d)

Slash elimination

\[\Gamma \vdash A / B \quad \Delta \vdash B \]
9. Natural Deduction (cont’d)

Slash elimination

\[\Gamma \vdash A / B \quad \Delta \vdash B \quad [/E] \]
9. Natural Deduction (cont’d)

Slash elimination

\[
\frac{\Gamma \vdash A/B \quad \Delta \vdash B}{\Gamma \circ \Delta \vdash A} \quad [/E]
\]
9. Natural Deduction (cont’d)

Slash elimination

\[
\frac{\Gamma \vdash A / B \quad \Delta \vdash B}{\Gamma \circ \Delta \vdash A} \quad [/E] \quad \Gamma \vdash B
\]
9. Natural Deduction (cont’d)

Slash elimination

\[
\frac{\Gamma \vdash A/B \quad \Delta \vdash B}{\Gamma \circ \Delta \vdash A} \quad [\text{/E}] \quad \frac{\Gamma \vdash B \quad \Delta \vdash B \setminus A}{\Gamma \circ \Delta \vdash A}
\]
9. Natural Deduction (cont’d)

Slash elimination

$$\frac{\Gamma \vdash A / B \quad \Delta \vdash B}{\Gamma \circ \Delta \vdash A} [/E] \quad \frac{\Gamma \vdash B \quad \Delta \vdash B \setminus A}{\Gamma \circ \Delta \vdash B} [\setminus E]$$
9. **Natural Deduction (cont’d)**

Slash elimination

\[
\frac{\Gamma \vdash A/B \quad \Delta \vdash B}{\Gamma \cup \Delta \vdash A} \quad [/E] \quad \frac{\Gamma \vdash B \quad \Delta \vdash B \setminus A}{\Gamma \cup \Delta \vdash A} \quad \{/E\}
\]
9. Natural Deduction (cont’d)

Slash elimination

\[
\frac{\Gamma \vdash A/B \quad \Delta \vdash B}{\Gamma \odot \Delta \vdash A} \quad [/E] \quad \frac{\Gamma \vdash B \quad \Delta \vdash B \setminus A}{\Gamma \odot \Delta \vdash A} \quad \backslash[E]
\]

Slash introduction
9. Natural Deduction (cont’d)

Slash elimination

\[
\frac{\Gamma \vdash \frac{A}{B} \quad \Delta \vdash B}{\Gamma \circ \Delta \vdash A} [/E] \quad \frac{\Gamma \vdash \frac{B}{\Delta} \quad \Delta \vdash B \setminus A}{\Gamma \circ \Delta \vdash A} [\setminus E]
\]

Slash introduction

\[
\Gamma \circ B \vdash A
\]
9. Natural Deduction (cont’d)

Slash elimination

\[
\frac{\Gamma \vdash A/B \quad \Delta \vdash B}{\Gamma \circ \Delta \vdash A} \quad \text{[/E]}
\]

\[
\frac{\Gamma \vdash B \quad \Delta \vdash B\backslash A}{\Gamma \circ \Delta \vdash A} \quad \text{[/E]}
\]

Slash introduction

\[
\frac{}{\Gamma \circ B \vdash A} \quad \text{[/I]}
\]
9. Natural Deduction (cont’d)

Slash elimination

\[
\frac{\Gamma \vdash A \div B \quad \Delta \vdash B}{\Gamma \circ \Delta \vdash A} \quad [/E] \quad \frac{\Gamma \vdash B \quad \Delta \vdash B \setminus A}{\Gamma \circ \Delta \vdash A} \quad [\setminus E]
\]

Slash introduction

\[
\frac{\Gamma \circ B \vdash A}{\Gamma \vdash A \div B} \quad [/I]
\]
9. **Natural Deduction (cont’d)**

Slash elimination

\[
\frac{\Gamma \vdash A/B \quad \Delta \vdash B}{\Gamma \circ \Delta \vdash A} \quad [/E]
\]

\[
\frac{\Gamma \vdash B \quad \Delta \vdash B\setminus A}{\Gamma \circ \Delta \vdash A} \quad \setminus E
\]

Slash introduction

\[
\frac{\Gamma \circ B \vdash A}{\Gamma \vdash A/B} \quad [/I]
\]

\[
B \circ \Gamma \vdash A
\]
9. Natural Deduction (cont’d)

Slash elimination

\[
\frac{\Gamma ⊢ A/B \quad \Delta ⊢ B}{\Gamma \circ \Delta ⊢ A} \quad [/E] \quad \frac{\Gamma ⊢ B \quad \Delta ⊢ B\setminus A}{\Gamma \circ \Delta ⊢ A} \quad [\setminus E]
\]

Slash introduction

\[
\frac{\Gamma \circ B ⊢ A}{\Gamma ⊢ A/B} \quad [/I] \quad \frac{B \circ \Gamma ⊢ A}{\setminus I}
\]
9. Natural Deduction (cont’d)

Slash elimination

\[
\frac{\Gamma \vdash A/B \quad \Delta \vdash B}{\Gamma \circ \Delta \vdash A} [/E] \quad \frac{\Gamma \vdash B \quad \Delta \vdash B \setminus A}{\Gamma \circ \Delta \vdash A} [\setminus E]
\]

Slash introduction

\[
\frac{\Gamma \circ B \vdash A}{\Gamma \vdash A/B} [/I] \quad \frac{B \circ \Gamma \vdash A}{\Gamma \vdash B \setminus A} [\setminus I]
\]
9. **Natural Deduction (cont’d)**

Slash elimination

\[
\frac{\Gamma \vdash A/B \quad \Delta \vdash B}{\Gamma \circ \Delta \vdash A} \quad [/E] \quad \frac{\Gamma \vdash B \quad \Delta \vdash B\backslash A}{\Gamma \circ \Delta \vdash A} \quad [\backslash E]
\]

Slash introduction

\[
\frac{\Gamma \circ B \vdash A}{\Gamma \vdash A/B} \quad [/I] \quad \frac{B \circ \Gamma \vdash A}{\Gamma \vdash B\backslash A} \quad [\backslash I]
\]

9. Natural Deduction (cont’d)

Slash elimination

\[
\frac{\Gamma \vdash A / B}{\Gamma \circ \Delta \vdash A} \quad \frac{\Gamma \vdash B}{\Gamma \circ \Delta \vdash A / B}
\]

\[
\frac{\Gamma \vdash B \Delta \vdash B \setminus A}{\Gamma \circ \Delta \vdash A \setminus B}
\]

Slash introduction

\[
\frac{\Gamma \circ B \vdash A}{\Gamma \vdash A / B} \quad \frac{B \circ \Gamma \vdash A}{\Gamma \vdash B \setminus A}
\]

Features: □
9. Natural Deduction (cont’d)

Slash elimination

\[
\begin{align*}
\Gamma \vdash A / B & \quad \Delta \vdash B \quad \text{[/E]} \\
\Gamma \circ \Delta & \vdash A
\end{align*}
\]

\[
\begin{align*}
\Gamma \vdash B & \quad \Delta \vdash B \setminus A \quad \text{[\setminus E]} \\
\Gamma \circ \Delta & \vdash A
\end{align*}
\]

Slash introduction

\[
\begin{align*}
\Gamma \circ B \vdash A & \quad \text{[/I]} \\
\Gamma & \vdash A / B
\end{align*}
\]

\[
\begin{align*}
B \circ \Gamma \vdash A & \quad \text{[\setminus I]} \\
\Gamma & \vdash B \setminus A
\end{align*}
\]

Features: □

\[
\Gamma \vdash \Box A
\]
9. Natural Deduction (cont’d)

Slash elimination

\[
\frac{\Gamma \vdash A/B \quad \Delta \vdash B}{\Gamma \circ \Delta \vdash A} \quad [/E] \quad \frac{\Gamma \vdash B \quad \Delta \vdash B \setminus A}{\Gamma \circ \Delta \vdash A} \quad [\setminus E]
\]

Slash introduction

\[
\frac{\Gamma \circ B \vdash A}{\Gamma \vdash A/B} \quad [/I] \quad \frac{B \circ \Gamma \vdash A}{\Gamma \vdash B \setminus A} \quad [\setminus I]
\]

Features: \(\Box\)

\[
\Gamma \vdash \Box A \quad [\Box E]
\]
9. Natural Deduction (cont’d)

Slash elimination

\[
\frac{\Gamma \vdash \frac{A/B}{\Delta} \quad \Delta \vdash B}{\Gamma \circ \Delta \vdash A} \quad [/E] \quad \frac{\Gamma \vdash B \quad \Delta \vdash \frac{B/A}{\Delta}}{\Gamma \circ \Delta \vdash A} \quad [\backslash E]
\]

Slash introduction

\[
\frac{\Gamma \circ B \vdash A}{\Gamma \vdash \frac{A/B}{\Gamma}} \quad [/I] \quad \frac{B \circ \Gamma \vdash A}{\Gamma \vdash B \backslash A} \quad [\backslash I]
\]

Features: □

\[
\frac{\Gamma \vdash \Box A}{\langle \Gamma \rangle \vdash A} \quad [\Box E]
\]
9. **Natural Deduction (cont’d)**

Slash elimination

\[
\frac{\Gamma \vdash A/B \quad \Delta \vdash B}{\Gamma \circ \Delta \vdash A} \quad \frac{\Gamma \vdash B \quad \Delta \vdash B\setminus A}{\Gamma \circ \Delta \vdash A}
\]

[/E] \quad \[\setminus E\]

Slash introduction

\[
\frac{\Gamma \circ B \vdash A}{\Gamma \vdash A/B} \quad \frac{B \circ \Gamma \vdash A}{\Gamma \vdash B\setminus A}
\]

[/I] \quad \[\setminus I\]

Features: □

\[
\frac{\Gamma \vdash \Box A}{\langle \Gamma \rangle \vdash A} \quad \frac{\langle \Gamma \rangle \vdash A}{\Box E}
\]

\[
\langle \Gamma \rangle \vdash A
\]
9. Natural Deduction (cont’d)

Slash elimination

\[
\frac{\Gamma \vdash A/B \quad \Delta \vdash B}{\Gamma \circ \Delta \vdash A} \quad [/E] \quad \frac{\Gamma \vdash B \quad \Delta \vdash B\setminus A}{\Gamma \circ \Delta \vdash A} \quad [\setminus E]
\]

Slash introduction

\[
\frac{\Gamma \circ B \vdash A}{\Gamma \vdash A/B} \quad [/I] \quad \frac{B \circ \Gamma \vdash A}{\Gamma \vdash B\setminus A} \quad [\setminus I]
\]

Features: \textit{□}

\[
\frac{\Gamma \vdash \Box A}{\langle \Gamma \rangle \vdash A} \quad [\Box E] \quad \frac{\langle \Gamma \rangle \vdash A}{\Gamma \vdash A} \quad [\Box I]
\]
9. Natural Deduction (cont’d)

Slash elimination

\[\Gamma \vdash A / B \quad \Delta \vdash B \quad \Rightarrow \quad \Gamma \circ \Delta \vdash A \quad [/E] \]

\[\Gamma \vdash B \quad \Delta \vdash B \setminus A \quad \Rightarrow \quad \Gamma \circ \Delta \vdash A \quad [\setminus E] \]

Slash introduction

\[\Gamma \circ B \vdash A \quad \Rightarrow \quad \Gamma \vdash A / B \quad [/I] \]

\[B \circ \Gamma \vdash A \quad \Rightarrow \quad \Gamma \vdash B \setminus A \quad [\setminus I] \]

Features: □

\[\Gamma \vdash \square A \quad [\square E] \]

\[\langle \Gamma \rangle \vdash A \quad [\square I] \]
10. Sample derivation

BOTTOM UP DERIVATION: the book that Knuth wrote
10. Sample derivation

the

BOTTOM UP DERIVATION: the book that Knuth wrote
10. **Sample derivation**

BOTTOM UP DERIVATION: the book that Knuth wrote
10. Sample derivation

BOTTOM UP DERIVATION: the book that Knuth wrote
10. Sample derivation

BOTTOM UP DERIVATION: the book that Knuth wrote
10. Sample derivation

BOTTOM UP DERIVATION: the book that Knuth wrote
10. Sample derivation

BOTTOM UP DERIVATION: the book that Knuth wrote
10. Sample derivation

that

BOTTOM UP DERIVATION: the book that Knuth wrote
10. Sample derivation

BOTTOM UP DERIVATION: the book that Knuth wrote
10. Sample derivation

\[
\text{the} \quad \frac{\text{book}}{n} \quad \frac{\text{that}}{(n \backslash n)/(s/np)}
\]

BOTTOM UP DERIVATION: the book that Knuth wrote
10. Sample derivation

\[
\text{that} \quad \frac{(n \backslash n)/(s/np)}{\text{book}} \quad \frac{\text{the}}{n} \quad \frac{np/n}{n}
\]

BOTTOM UP DERIVATION: the book that Knuth wrote
10. Sample derivation

\[
\frac{\text{book}}{n} \frac{(n \backslash n)/(s/np)}{np/n}
\]

BOTTOM UP DERIVATION: the book that Knuth wrote
10. Sample derivation

\[
\begin{align*}
\text{knuth} & \quad \frac{np}{np} \\
\text{that} & \quad \frac{(n \setminus n)/(s/np)}{\text{book}} \\
\text{the} & \quad \frac{np/n}{np/n}
\end{align*}
\]

BOTTOM UP DERIVATION: the book that Knuth wrote
10. Sample derivation

knuth
\[
\frac{np}{n}
\]

that
\[
\frac{(n \backslash n)/(s/np)}{\text{book}}\]

\[
\frac{\text{the}}{np/n}
\]

BOTTOM UP DERIVATION: the book that Knuth wrote
10. Sample derivation

```plaintext
knuth
\frac{np}{n}

\frac{\text{book}}{n} \frac{(n \setminus n)/(s/np)}{np/n}

\text{BOTTOM UP DERIVATION: the book that Knuth wrote}
```
10. Sample derivation

\[
\begin{align*}
\text{knuth} & \quad \frac{n p}{s} / n p \\
\text{that} & \quad (n \backslash n) / (s / n p) \\
\text{the} & \quad \frac{b o o k}{n} \\
\end{align*}
\]

BOTTOM UP DERIVATION: the book that Knuth wrote
10. Sample derivation

\[
\frac{\text{knuth}}{\text{np}} \quad \frac{\text{wrote}}{(\text{np} \backslash s)/\text{np}} \quad [\text{np} \vdash \text{np}]^1
\]

\[
\frac{\text{that}}{(n\backslash n)/(s/\text{np})}
\]

\[
\frac{\text{the}}{(\text{np}/n)}
\]

BOTTOM UP DERIVATION: the book that Knuth wrote
10. Sample derivation

\[
\begin{align*}
\text{knuth} & \quad \frac{\text{wrote}}{(np\backslash s)/np} \quad [np \vdash np]^1 \quad [/E] \\
\text{that} & \quad \frac{\text{the book}}{(n\backslash n)/(s/np)}
\end{align*}
\]

BOTTOM UP DERIVATION: the book that Knuth wrote
10. Sample derivation

\[
\begin{align*}
\text{knuth} & \quad \frac{\text{wrote}}{np} \\
\text{} & \quad \frac{(np \backslash s)/np}{np} \quad \frac{[np \vdash np]}{[\vdash E]} \\
\text{} & \quad \frac{\text{wrote} \circ np \vdash np \backslash s}{/E} \\
\text{the} & \quad \frac{\text{that}}{(n \backslash n)/(s/np)} \\
\text{book} & \quad \frac{(n \backslash n)/(s/np)}{np/n}
\end{align*}
\]

BOTTOM UP DERIVATION: the book that Knuth wrote
10. Sample derivation

\[
\array{\text{knuth} \quad \frac{\text{wrote}}{np} \quad \frac{(np/s)/np \quad [np \vdash np]^1}{\text{wrote} \circ np \vdash np/s} \quad [\setminus E] \\
\, \\
\text{the} \quad \frac{\text{book}}{n} \quad \frac{(n/n)/(s np)}{(n/n)/(s np)}}
\]

\text{BOTTOM UP DERIVATION: the book that Knuth wrote}
10. Sample derivation

BOTTOM UP DERIVATION: the book that Knuth wrote
10. Sample derivation

\[
\begin{align*}
\text{knuth} & \quad \frac{(np \backslash s)/np}{[np \vdash np]^1} \\
& \quad \frac{\text{wrote} \circ np \vdash np \backslash s}{[\backslash E]} \\
& \quad \frac{\text{wrote} \circ np \vdash np \backslash s}{[\backslash E]} \\
& \quad \frac{\text{knuth} \circ (\text{wrote} \circ np) \vdash s}{[? \quad \text{structural rule!}]}
\end{align*}
\]

\[
\begin{align*}
\text{the} \quad \frac{np/n}{(n/n)/(s/np)} \\
\text{book} \quad \frac{n}{(n/n)/(s/np)} \\
\text{that} \quad \frac{n}{(n/n)/(s/np)}
\end{align*}
\]

BOTTOM UP DERIVATION: the book that Knuth wrote
10. Sample derivation

\[
\begin{array}{c}
\text{the} \quad \frac{(n/n)/(s/np)}{np/n} \\
\text{book} \quad \frac{(n/n)/(s/np)}{np/n} \\
\text{that} \quad \frac{(n/n)/(s/np)}{np/n} \\
\text{wrote} \quad \frac{(np\backslash s)/np}{np} \quad [np \vdash np]^1 \quad [\backslash E] \\
\text{wrote} \circ np \vdash np\backslash s \\
\text{knuth} \quad \frac{(np\backslash s)/np}{np} \quad [\backslash E] \\
\text{knuth} \circ (\text{wrote} \circ np) \vdash s \\
\text{knuth} \circ (\text{wrote} \circ np) \circ np \vdash s \\
\text{? — structural rule!}
\end{array}
\]

BOTTOM UP DERIVATION: the book that Knuth wrote
10. Sample derivation

BOTTOM UP DERIVATION: the book that Knuth wrote
10. Sample derivation

BOTTOM UP DERIVATION: the book that Knuth wrote
10. Sample derivation

bottom up derivation: the book that Knuth wrote
10. Sample derivation

BOTTOM UP DERIVATION: the book that Knuth wrote
10. Sample derivation

BOTTOM UP DERIVATION: the book that Knuth wrote
10. Sample derivation

BOTTOM UP DERIVATION: the book that Knuth wrote
10. Sample derivation

BOTTOM UP DERIVATION: the book that Knuth wrote
10. Sample derivation

\[
\begin{align*}
\text{the} \quad & \text{that} \quad \text{book} \quad \text{wrote} \\
\frac{np/n \quad (n\n)/(s/np)}{\text{bottom up derivation: the book that Knuth wrote}}
\end{align*}
\]
11. Sample derivation (cont’d)

TOP DOWN DERIVATION: the book that Knuth wrote
11. Sample derivation (cont’d)

\[
\text{the } \circ (\text{book } \circ (\text{that } \circ (\text{knuth } \circ \text{wrote})))) \vdash np
\]

TOP DOWN DERIVATION: the book that Knuth wrote
11. Sample derivation (cont’d)

\[
\text{the } (\text{book } (\text{that } (\text{knuth } \text{wrote})))) \vdash np \quad [/E]
\[
\text{TOP DOWN DERIVATION: the book that Knuth wrote}
\]
11. Sample derivation (cont’d)

\[
\frac{np/n}{\text{the} \circ (\text{book} \circ (\text{that} \circ (\text{knuth} \circ \text{wrote}))))} \vdash np \quad [/E]
\]

TOP DOWN DERIVATION: the book that Knuth wrote
11. Sample derivation (cont’d)

\[
\begin{align*}
np / n \\
\text{the} \circ (\text{book} \circ (\text{that} \circ (\text{knuth} \circ \text{wrote})))) & \vdash np \quad [\!/E]
\end{align*}
\]

TOP DOWN DERIVATION: the book that Knuth wrote
11. Sample derivation (cont’d)

\[
\begin{align*}
\text{the} & \quad \frac{np/n}{\text{the} \circ (\text{book} \circ (\text{that} \circ (\text{knuth} \circ \text{wrote}))))} \vdash np \quad [/E]
\end{align*}
\]

TOP DOWN DERIVATION: the book that Knuth wrote
11. Sample derivation (cont’d)

\[
\begin{align*}
\text{the} & \quad (np/n) \\
\frac{\text{book} \circ (\text{that} \circ (\text{knuth} \circ \text{wrote}))}{\equiv n} & \quad \vdash n \\
\text{the} \circ (\text{book} \circ (\text{that} \circ (\text{knuth} \circ \text{wrote})))) & \equiv np \\
& \quad \vdash np \\
& \quad [/E]
\end{align*}
\]

TOP DOWN DERIVATION: the book that Knuth wrote
11. Sample derivation (cont’d)

\[
\begin{align*}
\text{the} & \\
\text{\(np/n\)} & \quad \text{book \(\circ (\text{that} \circ (\text{knuth} \circ \text{wrote}))\)} \vdash n \quad [\backslash E] \\
\text{the} & \quad \text{\(\circ (\text{book} \circ (\text{that} \circ (\text{knuth} \circ \text{wrote}))))\)} \vdash np \quad [/E]
\end{align*}
\]

TOP DOWN DERIVATION: the book that Knuth wrote
11. Sample derivation (cont’d)

\[
\begin{align*}
\text{the} & \quad \quad n \\
np/n & \quad \quad \text{book} \circ (\text{that} \circ (\text{knuth} \circ \text{wrote})) \vdash n \quad [\backslash E] \\
\text{the} \circ (\text{book} \circ (\text{that} \circ (\text{knuth} \circ \text{wrote}))) & \vdash np \quad [/E]
\end{align*}
\]

TOP DOWN DERIVATION: the book that Knuth wrote
11. Sample derivation (cont’d)

\[
\begin{align*}
\text{the} & \quad n \\
np/n & \quad \text{book} \circ (\text{that} \circ (\text{knuth} \circ \text{wrote})) \vdash n \\
\text{the} \circ (\text{book} \circ (\text{that} \circ (\text{knuth} \circ \text{wrote}))) & \vdash np
\end{align*}
\]

\[\text{[}/E]\]

TOP DOWN DERIVATION: the book that Knuth wrote
11. Sample derivation (cont’d)

\[
\text{\begin{array}{c}
\frac{\text{the} \quad \text{book}}{n} \\
\frac{\text{np} / n}{\text{book} \circ (\text{that} \circ (\text{knuth} \circ \text{wrote})) \vdash n} \quad [\backslash E]
\end{array}}
\]

\[
\text{\begin{array}{c}
\frac{\text{the} \circ (\text{book} \circ (\text{that} \circ (\text{knuth} \circ \text{wrote})))) \vdash np} \quad [/ E]
\end{array}}
\]

TOP DOWN DERIVATION: the book that Knuth wrote
11. Sample derivation (cont’d)

\[
\frac{\text{the}}{np/n} \quad \frac{\text{book}}{n} \quad \frac{\text{that} \circ (\text{knuth} \circ \text{wrote}) \vdash n \setminus n}{\text{book} \circ (\text{that} \circ (\text{knuth} \circ \text{wrote})) \vdash n} \quad [\setminus E] \\
\frac{\text{the} \circ (\text{book} \circ (\text{that} \circ (\text{knuth} \circ \text{wrote})))) \vdash np}{[/E]}
\]

TOP DOWN DERIVATION: the book that Knuth wrote
11. Sample derivation (cont’d)

\[
\begin{align*}
\text{NP/}\text{N} & \quad \text{book} \quad \frac{\text{that} \circ (\text{knuth} \circ \text{wrote})}{\vdash \text{N}} \\
\text{n} & \quad \frac{\text{book} \circ (\text{that} \circ (\text{knuth} \circ \text{wrote}))}{\vdash \text{N}} \\
\text{the} \circ (\text{book} \circ (\text{that} \circ (\text{knuth} \circ \text{wrote}))) & \vdash \text{NP} \\
\end{align*}
\]

\text{TOP DOWN DERIVATION: the book that Knuth wrote}
11. Sample derivation (cont’d)

\[
\begin{align*}
\text{the} & \quad \text{book} \quad \frac{(n \setminus n)/(s/np)}{np/n} \quad \frac{\text{that} \circ (\text{knuth} \circ \text{wrote})}{n \setminus n} \quad \frac{\text{\[\text{// \ E}\]}}{[\\text{// \ E}]}
\end{align*}
\]

TOP DOWN DERIVATION: the book that Knuth wrote
11. Sample derivation (cont’d)

\[
\begin{align*}
\text{TOP DOWN DERIVATION: } & \text{the book that Knuth wrote} \\
\frac{\text{the}}{np/n} & \frac{\text{book}}{n} \frac{(n \backslash n)/(s/np)}{\text{that } \circ (\text{knuth } \circ \text{wrote})} \vdash n \backslash n &[/E] \\
\frac{\text{np}/n} & \frac{\text{book } \circ (\text{that } \circ (\text{knuth } \circ \text{wrote}))} {n} \vdash n &[\backslash E] \\
\frac{\text{the } \circ (\text{book } \circ (\text{that } \circ (\text{knuth } \circ \text{wrote}))))} {np} \vdash np &[/E]
\end{align*}
\]
11. Sample derivation (cont’d)

\[
\begin{align*}
\text{the} & \quad \frac{\text{that}}{(n\backslash n)/(s/np)} \quad \frac{(n\backslash n)/(s/np) \vdash n\backslash n}{[\backslash E]} \\
np/n & \quad \frac{\text{book} \circ (\text{that} \circ (\text{knuth} \circ \text{wrote})) \vdash n \backslash n}{[\backslash E]} \\
\text{the} & \quad \frac{\text{book} \circ (\text{that} \circ (\text{knuth} \circ \text{wrote})) \vdash np}{[\backslash E]}
\end{align*}
\]

TOP DOWN DERIVATION: the book that Knuth wrote
11. Sample derivation (cont’d)

\[
\begin{align*}
\text{the} & \quad \text{np/n} \\
\text{book} & \quad \frac{(n\, n)/(s\, np)}{\text{that}} \\
& \quad \text{knuth} \circ \text{wrote} \vdash s\, np \\
\frac{(\text{that} \circ (\text{knuth} \circ \text{wrote})) \vdash n\, n}{[\setminus E]} \\
\frac{\text{book} \circ (\text{that} \circ (\text{knuth} \circ \text{wrote})) \vdash n}{[\setminus E]} \\
\frac{\text{the} \circ (\text{book} \circ (\text{that} \circ (\text{knuth} \circ \text{wrote})))) \vdash np}{[/E]} \\
\end{align*}
\]

TOP DOWN DERIVATION: the book that Knuth wrote
11. Sample derivation (cont’d)

\[
\begin{align*}
\text{the} & \frac{n}{np/n} \quad \frac{\text{book}}{(n\backslash n)/(s/np)} \quad \frac{\text{that}}{\text{that} \circ (\text{knuth} \circ \text{wrote})} & \frac{\text{knuth} \circ \text{wrote} \vdash s/np}{\vdash n\backslash n} & \frac{\vdash n\backslash n}{\vdash n} & \text{top down derivation: the book that Knuth wrote} \\
\text{np/n} & \frac{\text{book} \circ (\text{that} \circ (\text{knuth} \circ \text{wrote})) \vdash n}{\vdash np}
\end{align*}
\]
11. Sample derivation (cont’d)

\[
\begin{align*}
\text{top down derivation: the book that Knuth wrote} \\
\text{the} & \quad \text{book} \quad \frac{\text{that}}{(n\backslash n)/(s/np)} \quad \frac{(\text{knuth} \circ \text{wrote}) \circ np \vdash s}{[/I]^1} \\
np/n & \quad n \quad \frac{\text{that} \circ (\text{knuth} \circ \text{wrote}) \vdash n\backslash n}{[/E]} \\
np/n & \quad \text{book} \circ (\text{that} \circ (\text{knuth} \circ \text{wrote})) \vdash n \quad [/E] \\
\text{the} & \quad (\text{book} \circ (\text{that} \circ (\text{knuth} \circ \text{wrote}))) \vdash np \quad [/E]
\end{align*}
\]
11. Sample derivation (cont’d)

\[
\begin{align*}
\frac{\text{the}}{\text{the book}} & \quad \frac{\text{that}}{\text{that} \circ (\text{k}\text{nuth} \circ \text{wrote})} & \quad \frac{\text{that} \circ (\text{k}\text{nuth} \circ \text{wrote}) \circ \text{np} \vdash s}{\text{structural rule}} \\
\frac{\text{np/n}}{(n \backslash n)/(s/\text{np})} & \quad \frac{\text{knuth} \circ \text{wrote} \vdash s/\text{np}}{\text{[/I]}^1} & \quad \frac{\text{knuth} \circ \text{wrote} \vdash s/\text{np}}{\text{[/E]}} \\
\frac{\text{book} \circ (\text{that} \circ (\text{k}\text{nuth} \circ \text{wrote})) \vdash n \backslash n}{\text{[/E]}} & \quad \frac{\text{book} \circ (\text{that} \circ (\text{k}\text{nuth} \circ \text{wrote})) \vdash n \backslash n}{\text{[/E]}} \\
\frac{\text{the} \circ (\text{book} \circ (\text{that} \circ (\text{k}\text{nuth} \circ \text{wrote}))) \vdash \text{np}}{\text{[/E]}}
\end{align*}
\]

TOP DOWN DERIVATION: the book that Knuth wrote
11. Sample derivation (cont’d)

\[
\begin{align*}
\text{the} & \quad \frac{\text{book}}{n} \quad \frac{\text{that}}{\frac{\text{that} \circ (\text{knuth} \circ \text{wrote})}{\frac{\text{n}}{\text{n}}} \vdash \frac{\frac{(\text{n} \setminus \text{n})/\left(\text{s}/\text{np}\right)}{\text{knuth} \circ (\text{wrote} \circ \text{np})} \vdash \text{s}}{\text{structural rule}}} \quad \frac{\text{knuth} \circ \text{wrote} \vdash \frac{\text{s}/\text{np}}{\text{I}}} \quad \frac{\vdash \frac{\text{n} \setminus \text{n}}{\text{E}}} \quad \frac{\text{the} \circ (\text{book} \circ (\text{that} \circ (\text{knuth} \circ \text{wrote}))) \vdash \frac{\text{np}}{\text{E}}} \quad \frac{\text{TOP DOWN DERIVATION: the book that Knuth wrote}}{\text{First} \quad \text{Last} \quad \text{Prev} \quad \text{Next}}
\end{align*}
\]
11. Sample derivation (cont’d)

TOP DOWN DERIVATION: the book that Knuth wrote

\[
\text{the} \quad \frac{\text{book}}{n} \quad \frac{\text{that}}{(n \setminus n)/(s/np)} \quad \frac{\text{that} \circ \text{(knuth} \circ \text{wrote})}{n \setminus n} \quad \frac{\text{knuth} \circ \text{(wrote} \circ np)}{s} \quad \frac{[\setminus E]}{[\text{structural rule}]} \quad \frac{\text{(knuth} \circ \text{wrote}) \circ np}{s} \quad \frac{[/I]^1}{[/E]} \quad \frac{\text{knuth} \circ \text{wrote}}{s/np} \quad \frac{[\setminus E]}{[/E]} \quad \frac{\text{book} \circ \text{(that} \circ \text{(knuth} \circ \text{wrote}))}{n} \quad \frac{[\setminus E]}{[/E]} \quad \frac{\text{the} \circ \text{(book} \circ \text{(that} \circ \text{(knuth} \circ \text{wrote}))}}{np} \quad \frac{[\setminus E]}{[/E]}
\]
11. Sample derivation (cont’d)

\[
\frac{\text{that}}{(n\setminus n)/(s/np)} \quad \frac{\text{np}}{\text{knuth} \circ (\text{wrote} \circ np) \vdash s} \quad \frac{\text{knuth} \circ \text{wrote} \vdash s/np}{\text{structural rule}} \quad [\setminus E] \\
\frac{\text{book}}{\text{n}} \quad \frac{\text{that} \circ (\text{knuth} \circ \text{wrote}) \vdash n\setminus n}{[\setminus E]} \\
\frac{\text{book} \circ (\text{that} \circ (\text{knuth} \circ \text{wrote})) \vdash n}{[\setminus E]} \\
\frac{\text{the} \circ (\text{book} \circ (\text{that} \circ (\text{knuth} \circ \text{wrote}))) \vdash np}{[\setminus E]}
\]

TOP DOWN DERIVATION: the book that Knuth wrote
11. Sample derivation (cont’d)

\[
\begin{align*}
\frac{\text{the}}{np/n} & \quad np \\
\frac{\text{book}}{n} & \quad \text{that} \\
\frac{(n\setminus n)/\left(s/np\right)}{\text{(knuth \circ wrote) \circ np} \vdash s} & \quad \text{[}\setminus E\text{]} \\
\frac{\text{knuth \circ wrote}}{s/np} & \quad \text{[structural rule]} \\
\frac{\text{[}/I\text{]}^1}{\vdash s} & \quad \text{[}/E\text{]} \\
\frac{\text{the \circ (book \circ (that \circ (knuth \circ wrote)))}}{n} & \quad \text{[}/E\text{]} \\
\frac{\text{the \circ (book \circ (that \circ (knuth \circ wrote)))}}{np} & \quad \text{[}/E\text{]} \\
\end{align*}
\]

TOP DOWN DERIVATION: the book that Knuth wrote
11. Sample derivation (cont’d)

\[
\begin{align*}
\text{the} & \quad \text{np/n} \\
\text{np/that} & \quad \text{(n/n)/(s/np)} \\
\text{book/that} & \quad \text{knuth/o (wrote/o np)} \vdash s \\
\text{book/o (that/o (knuth/o wrote))} & \quad \text{knuth/o wrote} \vdash s/np \\
\text{book/o (that/o (knuth/o wrote))} & \quad \text{np} \\
\end{align*}
\]

\text{TOP DOWN DERIVATION: the book that Knuth wrote}
11. Sample derivation (cont’d)

\[
\begin{align*}
\text{the} & \quad \frac{n}{np/n} \quad \frac{\text{book}}{(n\backslash n)/(s/np)} \quad \frac{\text{that}}{knuth} \quad \frac{\text{wrote} \circ np \vdash np\backslash s}{[\backslash E]} \quad \frac{knuth \circ (\text{wrote} \circ np) \vdash s}{[\text{structural rule}]} \\
& \quad \frac{\text{that} \circ (knuth \circ wrote) \vdash n\backslash n}{[\backslash E]} \quad \frac{knuth \circ wrote \vdash s/np}{/[I]^1} \quad \frac{knuth \circ wrote \vdash s/np}{/[E]} \\
& \quad \frac{\text{the} \circ (\text{book} \circ (\text{that} \circ (knuth \circ wrote))) \vdash n}{[\backslash E]} \quad \frac{\text{the} \circ (\text{book} \circ (\text{that} \circ (knuth \circ wrote))) \vdash np}{[\backslash E]}
\end{align*}
\]

TOP DOWN DERIVATION: the book that Knuth wrote
11. Sample derivation (cont’d)

TOP DOWN DERIVATION: the book that Knuth wrote
11. Sample derivation (cont’d)

\[
\begin{align*}
\text{knuth} & \quad \frac{(np\backslash s)/np}{np} \\
\text{wrote} \circ np & \vdash np\backslash s \\
\frac{\text{knuth} \circ (\text{wrote} \circ np) \vdash s}{[\backslash E]} \\
\frac{(\text{knuth} \circ \text{wrote}) \circ np \vdash s}{[\text{structural rule}]} \\
\frac{\text{knuth} \circ \text{wrote} \vdash s/np}{[\backslash I]^1} \\
\frac{\text{that} \circ (\text{knuth} \circ \text{wrote}) \vdash n\backslash n}{[\backslash E]} \\
\frac{\text{book} \circ (\text{that} \circ (\text{knuth} \circ \text{wrote})) \vdash n\backslash n}{[\backslash E]} \\
\frac{\text{the} \circ (\text{book} \circ (\text{that} \circ (\text{knuth} \circ \text{wrote}))) \vdash np}{[\backslash E]}
\end{align*}
\]

TOP DOWN DERIVATION: the book that Knuth wrote
11. Sample derivation (cont’d)

$$\text{knuth} \frac{(np\backslash s)/np}{\text{wrote} \circ np \vdash np\backslash s} [/E]$$

$$\text{knuth} \circ (\text{wrote} \circ np) \vdash s [/E]$$

$$\frac{(knuth \circ wrote) \circ np \vdash s}{\text{structural rule}}$$

$$\text{knuth} \circ wrote \vdash s/np [/I]^1$$

$$\frac{\text{the} \circ (knuth \circ wrote) \vdash n \backslash n}{\text{structural rule}}$$

$$\frac{(n\backslash n)/(s/np)}{(n\backslash n)/((s/np)/(np/n))}$$

$$\frac{\text{book} \circ (knuth \circ wrote) \vdash s/np}{\text{structural rule}}$$

TOP DOWN DERIVATION: the book that Knuth wrote
11. Sample derivation (cont’d)

\[
\begin{align*}
&\text{the} \quad \frac{\text{book}}{np/n} \quad \frac{\text{that}}{(n\backslash n)/(s/np)} \quad \frac{\text{wrote}}{(np\backslash s)/np} \\
&\text{knuth} \quad np \quad \frac{wrote \circ np \vdash np\backslash s}{\backslash E} \\
&\text{knuth} \circ (wrote \circ np) \vdash s \quad \text{[structural rule]} \\
&\text{knuth} \circ wrote \vdash s/np \quad \text{[/I]}^1 \\
&\text{that} \circ (knuth \circ wrote) \vdash n\backslash n \quad \text{[/E]} \\
&\text{book} \circ (\text{that} \circ (knuth \circ wrote)) \vdash n \quad \text{[/E]} \\
&\text{the} \circ (\text{book} \circ (\text{that} \circ (knuth \circ wrote))) \vdash np \quad \text{[/E]} \\
\end{align*}
\]

TOP DOWN DERIVATION: the book that Knuth wrote
11. Sample derivation (cont’d)

TOP DOWN DERIVATION: the book that Knuth wrote
12. Illustration: solving type equations
12. Illustration: solving type equations

LEXICON: type assignment relation
12. Illustration: solving type equations

LEXICON: type assignment relation

LEARNING new words: solving for unknowns.
12. **Illustration: solving type equations**

LEXICON: type assignment relation

LEARNING new words: solving for unknowns.

Example. Given Alice ⊢ np, and Alice slaapt ⊢ s (‘Alice sleeps’)
12. Illustration: solving type equations

LEXICON: type assignment relation

LEARNING new words: solving for unknowns.

Example. Given Alice ⊢ np, and Alice slaapt ⊢ s (‘Alice sleeps’)

\[np \bullet slaapt \vdash s \]
12. **Illustration: solving type equations**

LEXICON: type assignment relation

LEARNING new words: solving for unknowns.

Example. Given Alice ⊢ np, and Alice slaapt ⊢ s (‘Alice sleeps’)

\[
\begin{align*}
np \bullet slaapt & \vdash s \\
slaapt & \vdash np\backslash s
\end{align*}
\]
12. Illustration: solving type equations

LEXICON: type assignment relation

LEARNING new words: solving for unknowns.

Example. Given Alice ⊨ np, and Alice slaapt ⊨ s (‘Alice sleeps’)

\[np \bullet slaapt \quad ⊨ \quad s \]
\[slaapt \quad ⊨ \quad np\backslash s \]

Example. Alice slaapt rustig (‘Alice sleeps quietly’)
12. Illustration: solving type equations

LEXICON: type assignment relation

LEARNING new words: solving for unknowns.

Example. Given Alice ⊢ np, and Alice slaapt ⊢ s (‘Alice sleeps’)

\[
np \bullet slaapt \vdash s \\
slaapt \vdash np \setminus s
\]

Example. Alice slaapt rustig (‘Alice sleeps quietly’)

\[
np \bullet (np \setminus s \bullet rustig) \vdash s
\]
12. **Illustration: solving type equations**

LEXICON: type assignment relation

LEARNING new words: solving for unknowns.

Example. Given Alice ⊨ np, and Alice slaapt ⊨ s (‘Alice sleeps’)

\[
np \bullet slaapt \ ⊨ \ s \\
slaapt \ ⊨ \ np\backslash s
\]

Example. Alice slaapt rustig (‘Alice sleeps quietly’)

\[
np \bullet (np\backslash s \bullet rustig) \ ⊨ \ s \\
np\backslash s \bullet rustig \ ⊨ \ np\backslash s
\]
12. Illustration: solving type equations

LEXICON: type assignment relation
LEARNING new words: solving for unknowns.

Example. Given Alice ⊢ np, and Alice slaapt ⊢ s (‘Alice sleeps’)

\[
\begin{align*}
np \bullet slaapt & \vdash s \\
slaapt & \vdash np \backslash s
\end{align*}
\]

Example. Alice slaapt rustig (‘Alice sleeps quietly’)

\[
\begin{align*}
np \bullet (np \backslash s \bullet rustig) & \vdash s \\
np \backslash s \bullet rustig & \vdash np \backslash s \\
rustig & \vdash (np \backslash s) \backslash (np \backslash s)
\end{align*}
\]
13. Exercise
13. Exercise

Transform CFG rules in categorial type assignments.
13. Exercise

Transform CFG rules in categorial type assignments.

Strategy:

- Assign a constituent structure bracketing
13. Exercise

Transform CFG rules in categorial type assignments.

Strategy:

- Assign a constituent structure bracketing
- Impose a function/argument articulation within each constituent domain
14. Exercise
14. Exercise

Subtyping through feature decorations:
14. Exercise

Subtyping through feature decorations:

\[\Diamond \Box A \rightarrow A \rightarrow \Box \Diamond A \]
14. Exercise

Subtyping through feature decorations:

\[\Diamond \Box A \rightarrow A \rightarrow \Box \Diamond A \]

Applications agreement patterns, scope construal, licensing/antilicensing relations, polarity sensitivity.
14. Exercise

Subtyping through feature decorations:

\[\Diamond \Box A \rightarrow A \rightarrow \Box \Diamond A\]

Applications agreement patterns, scope construal, licensing/antilicensing relations, polarity sensitivity.

Visit

15. Variation: the structural module
15. Variation: the structural module

Diversity invariant BASE MODULE + variable STRUCTURAL PLUG-INS
15. **Variation: the structural module**

Diversity invariant BASE MODULE + variable STRUCTURAL PLUG-INS

Structural module non-logical axioms, POSTULATES.
15. Variation: the structural module

Diversity invariant BASE MODULE + variable STRUCTURAL PLUG-INS

Structural module non-logical axioms, POSTULATES.

Global versus controlled Structural rules can be introduced in two ways:
15. Variation: the structural module

Diversity invariant BASE MODULE + variable STRUCTURAL PLUG-INS

Structural module non-logical axioms, POSTULATES.

Global versus controlled Structural rules can be introduced in two ways:

- GLOBAL: too crude — destroys grammatically relevant information.
15. *Variation: the structural module*

Diversity invariant BASE MODULE + variable STRUCTURAL PLUG-INS

Structural module non-logical axioms, POSTULATES.

Global versus controlled Structural rules can be introduced in two ways:

- **GLOBAL:** too crude — destroys grammatically relevant information.
- **CONTROLLED:** use ♦, □ as licensing/blocking features.
15. Variation: the structural module

Diversity invariant BASE MODULE + variable STRUCTURAL PLUG-INS

Structural module non-logical axioms, POSTULATES.

Global versus controlled Structural rules can be introduced in two ways:

▶ GLOBAL: too crude — destroys grammatically relevant information.
▶ CONTROLLED: use ♦, □ as licensing/blocking features.

Compare Global versus controlled reordering.
15. Variation: the structural module

Diversity invariant BASE MODULE + variable STRUCTURAL PLUG-INS

Structural module non-logical axioms, POSTULATES.

Global versus controlled Structural rules can be introduced in two ways:

▶ GLOBAL: too crude — destroys grammatically relevant information.
▶ CONTROLLED: use ♦, □ as licensing/blocking features.

Compare Global versus controlled reordering.

\[A \bullet B \rightarrow B \bullet A \]

\[\Diamond A \bullet B \rightarrow B \bullet \Diamond A \]
16. **Frame constraints**

Non-logical axioms each structural postulate comes with a *constraint* on the interpretation of the Merge/feature checking relations.
16. **Frame constraints**

Non-logical axioms each structural postulate comes with a *constraint* on the interpretation of the Merge/feature checking relations.

Example
16. Frame constraints

Non-logical axioms each structural postulate comes with a *constraint* on the interpretation of the Merge/feature checking relations.

Example

\[\Diamond A \bullet (B \bullet C) \rightarrow (\Diamond A \bullet B) \bullet C \]
16. Frame constraints

Non-logical axioms each structural postulate comes with a constraint on the interpretation of the Merge/feature checking relations.

Example

\[\Diamond A \bullet (B \bullet C) \rightarrow (\Diamond A \bullet B) \bullet C \]
17. Multidimensional composition
17. Multidimensional composition

Composition modes Different families of operators can be put together in one grammar:
17. Multidimensional composition

Composition modes Different families of operators can be put together in one grammar:

\[\diamond_j A \vdash B \iff A \vdash \square_j B \]

\[A \vdash C/_{i}B \iff A \bullet_{i} B \vdash C \iff B \vdash A\setminus_{i}C \]
17. Multidimensional composition

Composition modes Different families of operators can be put together in one grammar:

\[\text{\textbullet}_j A \vdash B \iff A \vdash \text{\textbullet}_j B \]
\[A \vdash C \text{\textbar}_i B \iff A \cdot_i B \vdash C \iff B \vdash A \backslash_i C \]

Expressive possibilities
17. Multidimensional composition

Composition modes Different families of operators can be put together in one grammar:

\[\Diamond_j A \vdash B \iff A \vdash \Box_j B \]

\[A \vdash C/_{i}B \iff A \bullet_i B \vdash C \iff B \vdash A\backslash_i C \]

Expressive possibilities

- the LOGICAL rules for each family are invariant
17. Multidimensional composition

Composition modes Different families of operators can be put together in one grammar:

\[\diamond_j A \vdash B \iff A \vdash \Box_j B \]
\[A \vdash C /_i B \iff A \bullet_i B \vdash C \iff B \vdash A \backslash_i C \]

Expressive possibilities

- the LOGICAL rules for each family are invariant
- STRUCTURAL rules may be different
17. Multidimensional composition

Composition modes Different families of operators can be put together in one grammar:

\[\diamond_j A \vdash B \quad \text{iff} \quad A \vdash \Box_j B \]
\[A \vdash C/_{i} B \quad \text{iff} \quad A \bullet_{i} B \vdash C \quad \text{iff} \quad B \vdash A\backslash_{i} C \]

Expressive possibilities

- the LOGICAL rules for each family are invariant
- STRUCTURAL rules may be different
- opportunity for INTERACTION postulates
17. Multidimensional composition

Composition modes Different families of operators can be put together in one grammar:

\[\diamond_j A \vdash B \iff A \vdash \Box_j B \]
\[A \vdash C/_{i}B \iff A \bullet_{i} B \vdash C \iff B \vdash A\setminus_{i}C \]

Expressive possibilities

- the LOGICAL rules for each family are invariant
- STRUCTURAL rules may be different
- opportunity for INTERACTION postulates

Example Word grammar versus phrase grammar.
18. Exercise

Controlling semi-free word order in Latin.
19. Complexity issues
19. Complexity issues

Constraints on structural postulates and their correlates for computational complexity:
19. Complexity issues

Constraints on structural postulates and their correlates for computational complexity:

linearity constraint context-sensitive ceiling, PSPACE (Moot 2002)
19. Complexity issues

Constraints on structural postulates and their correlates for computational complexity:

linearity constraint context-sensitive ceiling, PSPACE (Moot 2002)

sublinear tightening LTAG embedding; polynomial (Moot 2002)
19. Complexity issues

Constraints on structural postulates and their correlates for computational complexity:

- **linearity constraint** context-sensitive ceiling, PSPACE (Moot 2002)
- **sublinear tightening** LTAG embedding; polynomial (Moot 2002)
- **losing track of occurrences** Turing expressivity (Lambek 1993, Carpenter 1999)
19. **Complexity issues**

Constraints on structural postulates and their correlates for computational complexity:

linearity constraint context-sensitive ceiling, PSPACE (Moot 2002)

sublinear tightening LTAG embedding; polynomial (Moot 2002)

losing track of occurrences Turing expressivity (Lambek 1993, Carpenter 1999)

20. Structural patterns
20. **Structural patterns**

Consider the left/right asymmetry of the distributivity patterns below.
20. **Structural patterns**

Consider the left/right asymmetry of the distributivity patterns below.

\[\diamond A \bullet (B \bullet C) \leftrightarrow (\diamond A \bullet B) \bullet C \quad (Pl1) \]
20. **Structural patterns**

Consider the left/right asymmetry of the distributivity patterns below.

\[\diamond A \bullet (B \bullet C) \leftrightarrow (\diamond A \bullet B) \bullet C \quad (Pl1) \]
\[\diamond A \bullet (B \bullet C) \leftrightarrow B \bullet (\diamond A \bullet C) \quad (Pl2) \]
20. **Structural patterns**

Consider the left/right asymmetry of the distributivity patterns below.

\[\Diamond A \cdot (B \cdot C) \leftrightarrow (\Diamond A \cdot B) \cdot C \quad (Pl1) \]
\[\Diamond A \cdot (B \cdot C) \leftrightarrow B \cdot (\Diamond A \cdot C) \quad (Pl2) \]
\[(A \cdot B) \cdot \Diamond C \leftrightarrow (A \cdot \Diamond C) \cdot B \quad (Pr2) \]
20. **Structural patterns**

Consider the left/right asymmetry of the distributivity patterns below.

\[\diamond A \bullet (B \bullet C) \leftrightarrow (\diamond A \bullet B) \bullet C \quad (Pl1) \]
\[\diamond A \bullet (B \bullet C) \leftrightarrow B \bullet (\diamond A \bullet C) \quad (Pl2) \]
\[(A \bullet B) \bullet \diamond C \leftrightarrow (A \bullet \diamond C') \bullet B \quad (Pr2) \]
\[(A \bullet B) \bullet \diamond C \leftrightarrow A \bullet (B \bullet \diamond C') \quad (Pr1) \]
20. **Structural patterns**

Consider the left/right asymmetry of the distributivity patterns below.

\[\diamond A \bullet (B \bullet C) \leftrightarrow (\diamond A \bullet B) \bullet C \quad (Pl1) \]
\[\diamond A \bullet (B \bullet C) \leftrightarrow B \bullet (\diamond A \bullet C) \quad (Pl2) \]

\[(A \bullet B) \bullet \diamond C \leftrightarrow (A \bullet \diamond C') \bullet B \quad (Pr2) \]
\[(A \bullet B) \bullet \diamond C \leftrightarrow A \bullet (B \bullet \diamond C') \quad (Pr1) \]

Output → Input: revealing a feature-marked constituent
20. Structural patterns

Consider the left/right asymmetry of the distributivity patterns below.

\[\diamond A \ast (B \ast C) \leftrightarrow (\diamond A \ast B) \ast C \quad (Pl1) \]
\[\diamond A \ast (B \ast C) \leftrightarrow B \ast (\diamond A \ast C) \quad (Pl2) \]
\[(A \ast B) \ast \diamond C \leftrightarrow (A \ast \diamond C') \ast B \quad (Pr2) \]
\[(A \ast B) \ast \diamond C \leftrightarrow A \ast (B \ast \diamond C') \quad (Pr1) \]

Output \rightarrow Input: revealing a feature-marked constituent

Input \leftarrow Output: hiding a marked constituent
20. **Structural patterns**

Consider the left/right asymmetry of the distributivity patterns below.

\[\diamond A \bullet (B \bullet C) \leftrightarrow (\diamond A \bullet B) \bullet C \quad (Pl1) \]
\[\diamond A \bullet (B \bullet C) \leftrightarrow B \bullet (\diamond A \bullet C) \quad (Pl2) \]
\[(A \bullet B) \bullet \diamond C \leftrightarrow (A \bullet \diamond C') \bullet B \quad (Pr2) \]
\[(A \bullet B) \bullet \diamond C \leftrightarrow A \bullet (B \bullet \diamond C') \quad (Pr1) \]

Output → Input: revealing a feature-marked constituent

Input ← Output: hiding a marked constituent

Pl1, Pl2: extending right selection (/)
20. **Structural patterns**

Consider the left/right asymmetry of the distributivity patterns below.

\[
\begin{align*}
\Diamond A \bullet (B \bullet C) & \leftrightarrow (\Diamond A \bullet B) \bullet C \quad (Pl1) \\
\Diamond A \bullet (B \bullet C) & \leftrightarrow B \bullet (\Diamond A \bullet C) \quad (Pl2) \\
(A \bullet B) \bullet \Diamond C & \leftrightarrow (A \bullet \Diamond C') \bullet B \quad (Pr2) \\
(A \bullet B) \bullet \Diamond C & \leftrightarrow A \bullet (B \bullet \Diamond C') \quad (Pr1)
\end{align*}
\]

Output → Input: revealing a feature-marked constituent

Input ← Output: hiding a marked constituent

Pl1, Pl2: extending right selection (/)

Pr1, Pr2: extending left selection (\)
21. Typological motivation
21. **Typological motivation**

Correlates between left/right distributivity patterns and typological distinction: head-initial versus head-final phrases/languages.
21. **Typological motivation**

Correlates between left/right distributivity patterns and typological distinction: head-initial versus head-final phrases/languages.

Case studies
21. Typological motivation

Correlates between left/right distributivity patterns and typological distinction: head-initial versus head-final phrases/languages.

Case studies

▶ Extraction
21. Typological motivation

Correlates between left/right distributivity patterns and typological distinction: head-initial versus head-final phrases/languages.

Case studies

- Extraction
- Head-adjunction: verb-clusters, cliticization
21. Typological motivation

Correlates between left/right distributivity patterns and typological distinction: head-initial versus head-final phrases/languages.

Case studies

▶ Extraction

▶ Head-adjunction: verb-clusters, cliticization

Further exploration Moortgat 1999a and 1999b, and the fragments in
http://www.let.uu.nl/~Michael.Moortgat/personal/Courses/fragments/
22. Comparison
22. Comparison

Compare Minimalist Grammars (MG) and Type Logical Grammars (TLG).
22. Comparison

Compare Minimalist Grammars (MG) and Type Logical Grammars (TLG).

Similarities
22. **Comparison**

Compare Minimalist Grammars (MG) and Type Logical Grammars (TLG).

Similarities

- **Lexicalized frameworks**
22. **Comparison**

Compare Minimalist Grammars (MG) and Type Logical Grammars (TLG).

Similarities

- **LEXICALIZED frameworks**
- **DERIVATIONAL view of composition**
22. Comparison

Compare Minimalist Grammars (MG) and Type Logical Grammars (TLG).

Similarities

▸ Lexicalized frameworks

▸ Derivational view of composition

Differences
22. Comparison

Compare Minimalist Grammars (MG) and Type Logical Grammars (TLG).

Similarities

▶ Lexicalized frameworks
▶ Derivational view of composition

Differences

▶ Structural reasoning: MG hard-wired (‘Move’), TLG flexible
22. **Comparison**

Compare Minimalist Grammars (MG) and Type Logical Grammars (TLG).

Similarities

- **LEXICALIZED** frameworks
- **DERIVATIONAL** view of composition

Differences

- Structural reasoning: MG hard-wired (‘Move’), TLG flexible
- Higher order types, hypothetical reasoning: TLG yes, MG no.
22. **Comparison**

Compare Minimalist Grammars (MG) and Type Logical Grammars (TLG).

Similarities

- **LEXICALIZED frameworks**
- **DERIVATIONAL view of composition**

Differences

- Structural reasoning: MG hard-wired (‘Move’), TLG flexible
- Higher order types, hypothetical reasoning: TLG yes, MG no.