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Designing linguistic databases: A primer for linguists 
 

Alexis Dimitriadis & Simon Musgrave 
 
1. Introduction: What this is about 
 
It is a commonplace, by now, to refer to the recent explosive growth in the power and availability of 
computers as an information revolution. The most casual of computer users, linguists included, have at 
their fingertips an enormous amount of computing power. Tasks such as writing a document or playing 
a movie now seem self-explanatory, thanks to the integration of computers into mass culture and more 
specifically to two related processes: On the one hand, to the development of sophisticated software 
specialized for such tasks; and on the other, to the emergence, even among casual users, of a common-
sense understanding of what these tasks are and how they may be approached. It is the combination of 
advanced tools and an intuitive understanding of what they do that allows us to experience such soft-
ware as nearly self-explanatory. 
 
But the full potential of this new technology for linguistic research, or indeed for many other purposes, 
is still only beginning to be understood. Collecting and analyzing linguistic data is not like composing 
a text document – although many linguists, lacking a more appropriate paradigm, have no choice but 
to approach it as such. To fully realize the promise of linguistic databases, the subject of this book, it is 
necessary to understand the underlying concepts and principles; only then can the goals and problems 
associated with creating a linguistic database be properly identified, and appropriate solutions arrived 
at. 
 
There are, of course, countless books on databases, at all levels of sophistication. But while a desktop 
database application is a standard component of “office” software, the world of databases revolves 
around commercial concepts such as inventories of merchandise, personnel lists, financial transac-
tions, etc. A linguist who undertakes to understand databases is presented with documentation, text-
books and examples from this world of commerce, with few hints as to how such examples relate to 
the domain of linguistics. The principles, to be sure, are equally applicable; but while a cookbook ap-
proach suffices for adapting a sample database to a related use (for example, turning an example CD 
database into a personal book database customized for one’s own needs), a linguistic database needs to 
be created from scratch, and (therefore) requires a real understanding of the principles involved. This 
chapter is intended to help provide this conceptual understanding, and to make its acquisition easier by 
using examples from linguistics and focusing on topics that are relevant to typical linguistic databases. 
 
1.1 What are databases, and why do we care? 
 
Technically, a database is defined as “any structured collection of data”. The emphasis here should be 
on structured: a stack of old-fashioned index cards, like the one in the example below, is a database:1 
The cards are organized in a consistent way to indicate the language name, phoneme inventory, allo-
morphy rules, a code summarizing the size of the inventory, etc. In this day of digital computers, of 
course, the term database is generally reserved for digital databases; but while a digital database ap-
plication has enormous advantages compared to old-fashioned pen and paper, it is still the structure of 
its contents, not the digital presentation, that is the essence of a database.  

                                                 
1The card is part of Norval Smith’s Phoneme Inventory Database, which has been digitized and is available 
online as part of the Typological Database System at http://languagelink.let.uu.nl/tds/. (See Dimitriadis et al., this 
volume). Some of the information mentioned in the text is on the back of the card. 
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The stereotypical electronic database brings to mind tables of data, or a web form with fields for enter-
ing data or defining queries. But databases (the electronic kind) appear in many shapes and forms: 
Every bank withdrawal, library search, or airline ticket purchase makes use of a database. Less obvi-
ously, they are also behind every phone call, every train arrivals board, and every department store 
cash register. The ideal database is invisible:2 It is a way to manage the information involved in carry-
ing out a certain task. A desktop computer’s calendar application, for example, stores appointments in 
a database; but the user sees a daily, weekly or monthly calendar, not a table with records, columns 
and keys. To return to linguistics, the Ethnologue website (www.ethnologue.com) provides a profile 
page for each of the world’s more than six thousand languages, and language profiles for each country 
in the world. The site does not obviously look like a database: there are no complicated search forms, 
and not a table to be seen anywhere. But each report page is composed on the fly, from information 
stored in a database.  It is an interesting exercise (after reading this introduction) to reconstruct the da-
tabase design that must be behind the Ethnologue directory. The database of the World Atlas of Lan-
guage Structures (Haspelmath, this volume) presents its data in the form of maps of the world, with the 
data for each language appearing as color-coded pins at the nominal location of the language.  
 
1.2 The “database model” 
 
Almost all computer applications engage in managing stored data of some sort. A text editor reads a 
document file and writes out an edited version, a computer game presents a series of encoded chal-
lenges and (if all goes well) records a high score for subsequent display, etc. Since this data is inevita-
bly stored in computer files, the most straightforward approach to creating applications is to let them 
read and write data from files in some suitable, custom-designed or generic format. For example, a 
text editor can read a file containing a document in some recognized format, and later write the modi-
fied document in the same file (or a different one). 
 
But this approach, called the “file-based model”, has serious shortcomings for complex data-intensive 
applications, which need to process large amounts of information in much more demanding ways. The 
software system that keeps track of a bank’s money, for example, must be able to: 
 
− store and retrieve large amounts of data very quickly 
− carry out “concurrent” queries and transactions for multiple users at the same time 
− allow various sorts of operations on the data, keeping an “audit record” of why each one was car-

ried out. (“Who withdrew 1000 euros from my account last week?”) 
− allow different applications to manipulate the same data: (E.g., the software embedded in auto-

matic teller machines, the computer terminals of bank tellers, management software for producing 
overviews statistics, systems for carrying out transactions with other banks, etc.) 

− selectively grant access to different subsets of information to different users. (I should only be able 
                                                 
2 The oft-quoted maxim “good typography is invisible” is applicable to functional design in general, and to data-
base design in particular. 
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to see the balance for my own account; clerks should not be able to move millions of euros at 
will). 

 
While the file-based model can be made to work, it leads to expensive duplication of programming 
effort, not to mention errors and incompatibilities at all levels. The many software applications in-
volved need to understand the same file format, cooperate to deal with problems of simultaneous ac-
cess to the same data, and somehow prevent unauthorized users from gaining access to the wrong data.  
 
The solution, called the “database model,” is to delegate the job of storing and managing data to a 
specialized entity called the database management system (DBMS). Instead of reading and writing 
from disk, applications request data from the DBMS or send data to it for storing. All the complicated 
issues of storing, searching and updating, and even the question of who should be granted access to the 
data, can be solved (and tested) just once at the DBMS level. 
 

 
 
The DBMS might function as a software library that is compiled into a larger program, or as a service 
that is contacted over an internet connection. What is important is that it functions as the gatekeeper 
for the system’s data: External applications request data from the DBMS (by means of a suitable query 
explaining what data they want), or submit data to the DBMS for storage in the database. The DBMS 
must meet all the challenges discussed above: handling concurrent requests, high performance, access 
management, etc. But it is much easier to address these issues in one module, which is then relied 
upon for all data-related tasks by other software. 
 
Rather than create a database manager for the needs of each project or organization, today’s DBMSs 
are general-purpose engines that can handle any kind of data management task. They do this by sup-
porting a very general model of data organization, which can then be customized according to each 
project’s needs. A bank or a linguistics research group, for example, can acquire such a database en-
gine (perhaps Oracle or MySQL) and use it to create and run a database tailored to their particular 
needs.  
 
1.3 Interacting with the database 
 
The typical DBMS is never seen by the users of the database; it does not have a graphical user inter-
face (GUI for short), but merely serves or stores data in response to requests expressed in a suitable 
command language. (The most common command language is SQL, for Structured Query Language; 
we’ll come back to it later). Large commercial DBMSs such as Oracle and Microsoft’s SQL Server, 
and free analogues such as MySQL and PostgreSQL are in this category; they must be used in combi-
nation with a “client” application, created in conjunction with the database, that provides the user in-
terface. In the simplest cases, such an application is a so-called “thin client” that provides a view of the 
database quite close to the structure of the underlying tables. In other cases, the client application has 
significant functionality of its own, and should be viewed as the heart of the application; the database 
is merely used to store the persistent data that supports the application. 
 
On today’s computers, an interface application is almost certain to provide a graphical user interface, 
usually a network of forms with text fields for typing in data, and buttons or menus for various ac-
tions. 
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Often, read-only views of the database do not look like structured forms but like “reports,” which 
present their contents in a more text-like format. (We already mentioned the Ethnologue website in 
this connection). The interface application might be a machine that sells train tickets, a cash register, a 
bar-code reader, or perhaps an eye-tracking device that collects data for a psycholinguistics experi-
ment. The database model makes it possible to use any of these interfaces, or several of them at once, 
with the same collection of data. Note that the end-user’s view of the data can be very different from 
the tables and columns that the DBMS uses to store the data. Even when relying on forms like the 
above, the interface presents the data in a way that is useful and informative to the user: Data from 
several tables can be combined, and various fields can be selectively hidden when they are not rele-
vant. The complete application, in short, can be a lot more than just a way of viewing and editing the 
tables of a database. 
 
In this guide, we will not discuss the many issues involved in the design of the user interface. The 
problems are no different from those that arise for any software development task, and the topic is 
much too large to be addressed here. We will limit ourselves to the question of designing the underly-
ing database, and give but a bare outline of the relationship between the database and the interface ap-
plication it supports. 

The interface application can be a Windows application, installed on the user’s desktop computer. But 
an extremely popular alternative is the combination of a DBMS with a way of generating web pages 
on the fly, providing a web-accessible database. The diagram shows a typical arrangement.  

 

End-users employ a web browser to view pages provided by a web server somewhere. Behind the 
scenes, the web server communicates with a DBMS that manages the actual data; a computer program 
(written in PHP in this example) interprets user actions, requesting data as needed from the DBMS and 
formatting the results for web display. Web server and DBMS may be on the same server computer, or 
on different computers – it makes no difference, since the web server has access to the data only 
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through the DBMS, and the user has access to the data only through the web server. 
 
Desktop database applications such as Microsoft Access and FileMaker Pro combine a DBMS with a 
graphical user interface in a single package.  

 
 
Such applications are sometimes mistakenly referred to as “off the shelf” databases, in contrast to 
“custom” DBMSs of the type just discussed. In fact, a database must be defined in FileMaker or in 
Access just as it must be defined in MySQL; the difference is that the desktop databases come with a 
graphical interface for managing the creation of tables, and a specific environment (also with a GUI) 
for creating the user interface of the database (a process that can be very easy or even automatic, but 
also has its limitations), whereas a pure DBMS does not provide integrated tools for the creation of its 
user interface.3 
 
1.4 Types of databases 
 
General-purpose database management systems are based on some formal, general model for organiz-
ing data. By far the most common type of database in use today is the so-called relational database.  
All the well-known DBMSs are relational databases, including Oracle, MySQL, Postgres, FileMaker 
Pro and Microsoft Access.4 While we will not discuss non-relational databases further in this chapter, 
it is worth mentioning some alternatives in order to better understand what a relational database can, 
and cannot, do.  
 

1) The simplest type of data model is to have a single table, or “file”. Each row corresponds to 
some object (e.g., a language) being described, and each column represents a property (“at-
tribute”), such as name, location, or Basic Word Order.5 

2) A relational database consists of several tables (“relations”) of this sort, linked to each other 
in complex ways. 

3) A hierarchical database is organized not as a table but as a tree structure, similar to folders 
and subfolders on a computer disk drive. Each unit “belongs” to some larger unit, and contains 
smaller units. Think of a book divided into chapters, then sections, then subsections etc. 

4) In an object-oriented database, data are modeled as “objects” of various types. Objects share 
or inherit properties according to their type; e.g., a database about word classes could let ob-
jects of the type transitive verb inherit properties of the type verb. While useful for very com-
plex applications, this model need not concern us here. 

 

                                                 
3 This does not mean that there is no GUI support for “pure” DBMSs. Database vendors or independent projects 
(in the case of open-source DBMSs) provide graphical tools for the management of each type of DBMS. For 
example, the application PhpMyAdmin is allows web-based administration of MySQL databases. Note that such 
applications are intended for the set-up and administration of databases, not for interaction with the end-user. 
4 FileMaker Pro has some unusual features, which somewhat obscure the fact that it is undoubtedly a relational 
database. 
5 Tabular information might also be stored in a format that does not look like a table; e.g., as a series of name-
value pairs. Data files for Shoebox, the linguistic data management application, are in this format. 

Forms interface stored tables
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The hierarchical model was among the very earliest database models; although it was largely sup-
planted by the relational model, it has become relevant again today because it corresponds to the natu-
ral structure of XML data, and is suitable for managing heterogeneous data. All of the linguistic data-
bases presented in this volume are relational databases, with the exception of the Typological Database 
System (Dimitriadis et al., this volume) which uses a hierarchical model to unify a collection of inde-
pendently developed linguistic databases. All of the component databases of the TDS are, in fact, rela-
tional databases. 
 
 
2. Choosing a database platform 
 
Creating a linguistic database does not always come easy to linguists. For one thing, it involves tech-
nology and concepts that are not covered in the typical humanities curriculum. (Hopefully this chapter 
is already helping in this respect). For another, it involves making decisions and choices involving this 
technology, whose consequences are sometimes not felt (or understood) until much later. While this 
chapter is meant to be a conceptual introduction, not a technology guide, we will attempt in this sec-
tion a very general discussion of some specific technical choices. 
 
The first decision to be made is: Do you need to build your own database? Numerous ready-to-use 
applications now exist that can support linguistic data collection, from the linguistics-specific (the best 
known probably being SIL’s Shoebox, and its successor the Linguist’s Toolbox) to the general (such as 
Microsoft’s Excel and other spreadsheet applications). Ferrara and Moran (2004) present an 
evaluation of several such tools. If an existing application meets your needs, it is not necessary to 
embark on designing and creating a new database from the ground up.  
 
Our discussion here cannot hope to provide definitive answers: The issues and trade-offs are complex, 
and depend on the nature of the specific task as well as the available resources (human, financial and 
technological), now and in the future. If you are pondering the creation of a new linguistic database 
and are unsure of the technical choices involved, it is probably best to solicit some expert advice from 
someone with a good understanding of the technology, being sure to discuss the specific requirements 
and resources available to your project.  
 
Having said that, most of the (custom) linguistic databases we know of can be classified in one of the 
following categories: 
  

1. The all-in-one desktop database, created with either Microsoft Access or FileMaker 
Pro.6 The simplest solution, it is most suitable for one-person data collection projects. 

 
2. The small, do-it-yourself web database. While considerably more complex than a desktop 

database, it is the best solution if multiple people must be able to enter data in parallel, or 
if there are plans to eventually make the database publicly available. 

 
3. A sophisticated database for a large project with professional programming staff.  

 
We will have little to say about the third category. While there is no sharp line between a “small” data-
base project and a large one, our goal here is to address the concerns of linguists with limited technical 
resources; the professionals do not really need our advice. 
 
2.1 The all-in-one desktop database 
 
For a one-person research project without expert technical support, a desktop database application 

                                                 
6 These two applications are the best-known in this category. The free office software suite Open Office provides 
an open source desktop database application that is (largely) compatible with Microsoft Access. 



7 

such as Microsoft Access or FileMaker Pro is often a very good solution. These applications store your 
entire database in a single disk file or folder,7 allowing it to be copied, backed up, and moved about 
like an ordinary document. This arrangement greatly simplifies the initial set-up of the system, since 
no server or network configuration is necessary. This can sometimes be very important in institutional 
settings, where IT policies might forbid the operation of independent database servers. 
 

 
The user interface of the desktop database application allows users to define tables and relationships 
for the database, and to create forms for its user interface. Some understanding of database principles 
(such as this chapter provides) should go a long way towards helping a new user understand how these 
programs are meant to be used. Each product includes a scripting language that can be used to extend 
the functions of the automatically generated forms – but only with a degree of arcane knowledge.  
 
The advantages of using an all-in-one database can be summarized as follows: 
 

1. A single product with a graphical user interface for both the database configuration and the 
user interface. 

2. Automatic or interactive generation of the forms. 
3. Everything fits in one file or folder, and can be backed up, sent by email, etc. 
4. All that is needed is a desktop computer with the database application; software is easy to in-

stall or already present, and it is not necessary to set up a server. 
5. Internet access is not needed. 

 
The last point means that the all-in-one database can be used on a laptop computer without internet 
access – an important consideration for linguists considering data collection in the field.8 
 
On the other hand, the approach also has certain disadvantages: 
 

1. The desktop databases discussed are proprietary software.9 This limits the ease of distributing 
copies of the database, since the recipient must own the application software. It also means 
that the data is not highly portable – it is possible to export data from, e.g., Access to a non-
proprietary file format, but doing so adds extra work. 

2. The form creation facilities have their limits, which cannot be exceeded without a lot of pro-
gramming knowledge. 

3. It is not possible for multiple persons to enter data in parallel. 
4. It is now a common (and highly recommended) practice to make one’s data available to other 

researchers over the internet. An all-in-one database generally needs additional effort in order 
to be made available on the web.   

 

                                                 
7Microsoft Access stores the entire database in a single disk file, while FileMaker stores each table as a separate 
disk file. 
8 While a web database can also be installed locally on a laptop for non-internet use, the process is considerably 
less trivial than simply copying a disk file. 
9 The database included in Open Office, which can read Access databases, is open source software. 

Forms interface stored tables
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The third point is particularly important for collaborative projects: One of the goals of the database 
model is to support concurrency, i.e., simultaneous editing sessions by different users. But since this 
kind of database is stored in a disk file, it must be ensured that only one person at a time should edit it. 
In general, collaborative data entry with a desktop database raises issues similar to collaborative edit-
ing of a text document: Even if a common copy is kept in an accessible location (e.g., a network 
drive), only one person can modify it at a time. 
 
These problems are not insurmountable, and FileMaker and Access each have mechanisms for ad-
dressing them. Although this chapter is not intended to be a review of software applications, we will 
comment briefly on two of them: FileMaker has an easy mechanism for creating a web server interface 
to a database; once this is set up, multiple users can work on the single copy of the database by con-
necting to it with a web browser. The approach does require a workstation that can be configured as a 
database server, and of course all users must have an internet connection (or at least be on a common 
intranet). Also, the automatically generated web interface does not support all the user interface fea-
tures of the full-fledged application.10 Microsoft Access, in turn, has a mechanism for “cloning” a da-
tabase, so that modifications to the copies can later be merged together. But since there is no way to 
prevent two people from independently modifying the same data, the approach is not entirely safe 
unless project policies can guarantee that this will not happen. 
 
There are other mechanisms and add-on products that can make a desktop database accessible through 
a web server. To the extent that they work properly, they have the effect of converting a desktop data-
base into a web database of the kind included in our second category, to which we now turn. 
 
2.2 The small web database 
 
When multiple people must collaborate on data entry, the desktop database solution is inadequate. A 
way must be found for all users of the system to work with the same data store. As we have already 
seen, this means a DBMS that interacts with “client” application programs over the network. While the 
client programs could be stand-alone applications written in a variety of programming languages, a 
very popular solution is to set up the database on a web server, allowing ordinary web browsers to be 
used for display. We have already mentioned this arrangement, shown in the following diagram (re-
peated): 

 

 
 
The web server, in the middle, includes a set of programs that generate web pages on the fly, using 
data retrieved from the database. The scripting language PHP is one of the most common languages 
for writing such programs (scripts); it is specialized for use in web applications, providing extensive 
support for connecting to databases and communicating with webservers and browsers.  In a web-
accessible database, PHP scripts interpret and carry out user actions, including requests to view data, 
to log on or off the system (if authentication is required), and to insert or update data in the database. 
The necessary data is fetched from the database (which may or may not be on the same computer as 
the webserver) and formatted into html pages. The web server then sends the generated pages to the 
user’s browser for display. 
 

                                                 
10 Bliss and Ritter (this volume) discuss their experiences with a FileMaker web database. 
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A very popular way to set up such a system is the so-called “LAMP stack”: Linux operating system, 
Apache webserver, MySQL database management system, and PHP. But many variations are possible: 
PostgreSQL can be used instead of MySQL; the entire Apache-MySQL-PHP combination can be in-
stalled on a computer running Windows or Mac OS X; a PHP module can be embedded in a Windows 
machine running Microsoft’s webserver, IIS; etc. One of our web databases consists of a PHP front 
end on a Linux machine, which talks to a Microsoft SQL Server DBMS running on a Windows server 
somewhere else. But the LAMP combination is a popular default because it is reliable, and the soft-
ware is free and open-source. The popularity of the technology has another important consequence for 
linguists of limited means: It is relatively easy to find programmers, including amateur programmers 
(e.g., students) who know how to make a web database with PHP. For the technically inclined, intro-
ductory how-to guides are also available online. 
 
The genius of this approach is that it relies on the user’s web browser to display the user interface of 
the database. A web browser, in addition to being already installed on every user’s computer, has the 
advantage of being an extremely sophisticated piece of software. For things that a web browser can do, 
it would be hard for a database project to create a stand-alone client application that does them equally 
well.  
 
But a web database has one important limitation: A web page cannot provide the fonts required to dis-
play it properly; these must be already resident on the user’s system. Linguistic databases often need to 
use phonetic symbols, or text from languages with less common writing systems, for which the re-
quired fonts are far from universally available. In such cases, users of a web database may need to 
manually download and install a font before they can use it properly. Fortunately, this is much simpler 
(and less problem-prone) than installing a full-fledged application. 
 
Some things are too complicated to do with HTML and a web browser. For example, we may want to 
display audio or video in a format that the browsers do not support, to draw syntax trees, to accurately 
measure reaction times, or to manipulate maps interactively. Modern browsers support a number of 
ways to extend their basic functionality; notably, they can execute javascript programs embedded in a 
webpage. For more demanding uses, a stand-alone client application is sometimes the only option. 
 
In short, the web-based database has the following important advantages: 
 

1. Fully supports collaboration. 
2. Allows open access to the database over the web (if, and when, desired). 
3. Can be built entirely with free software, and generally relies on open standards rather than 

proprietary protocols or file formats. 
4. The program that generates the user interface can be arbitrarily complex. The capabilities of 

browsers can be further extended with javascript and other browser technologies, if desired. 
 
Disadvantages: 
 

1. Compared to the all-in-one desktop database, the main disadvantage of the web database is 
that creating one requires knowledge of several different technical domains: facility with set-
ting up software and servers, PHP programming, HTML and CSS (for designing the pages to 
be generated) and SQL (for communication between PHP and database). Fortunately, the 
popularity of the LAMP suite means that it is relatively easy to find skilled help. For the tech-
nically inclined, there are many free primers and reference manuals. 

2. A second problem is that a server computer is needed. For linguists that only have access to 
their desktop workstation, this can mean negotiations with their IT department and/or the cost 
of buying a server. At some institutions, IT policies prohibit the operation of an independent 
server. 

 
It should be added that knowing how to build a database is only the beginning; to actually do so, a 
successful design must be devised and carried out. This is as true for a desktop database as for a web 
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database; but because of the greater complexity of web databases, the time investment required and the 
consequences of errors are proportionately larger. 

2.3 Some recommendations 
 
So how should you go about creating a database? We can only offer general suggestions here, and 
even these are limited to the kinds of situations we have experience with. But it should be clear that 
designing a database is a complex undertaking. If possible, get help from someone experienced with 
databases. 
 
If you do get help, be sure to be actively involved in all stages. Get as good an understanding as possi-
ble of the relevant issues (reading the rest of this volume should help), and meet at least weekly to dis-
cuss the design. Don’t assume that your programmer understands how you, as a linguist, view the data 
you want to collect; they don’t. Only through sustained discussion can there be a convergence of vi-
sions. 
 
Some more general suggestions: 
 

1. Plan ahead: design your database carefully before you start using it in earnest. 
2. Plan for change: As you collect data, your understanding of the phenomenon and the best way 

to study it will evolve. 
3. Keep it simple. (But make sure it meets your foreseeable needs). 
4. Document your database: explain it in writing, to yourself and others. 

 
 
3. The relational database model 
 
In a relational database, data is formally represented as instances of one or more relations (the 
mathematical basis of this design was first set out in Codd 1970). Concretely, a relation is a table with 
named columns:11 
 

Language name ISO code Speakers Area SourceID 

English eng 309,000,000 Europe Eth15 

Italian ita 61,500,000 Europe Eth15 

Swahili swh 772,000 Africa Ashton47 

Halh Mongolian khk 2.337,000 Asia Eth15 

Dyirbal dbl 40 Australia Dixon83 

Mongol mgt 336 Papua New Guinea SIL 2003 
 
Each row of the table is a record, corresponding to some object being described; in this case, to a lan-
guage. Each column is an attribute, representing a property. It can be seen that the cells of the table 
contain the data; each cell gives the value of an attribute, for the object corresponding to that row. 
Each value represents one unit of information about the object being described by the record in ques-
tion. 
 
It can be seen from the above example that rows and columns are not interchangeable: Each column is 
given a name (and meaning) by the database designer, while rows are added as the database is used. A 
table could have columns but contain no data (hence no rows); but there could never be a table with 
rows but no columns. As a database grows, it can come to contain thousands or even millions of re-

                                                 
11 Data and citations in these examples are sometimes made up, and should not be assumed to be either correct or 
representative of what the cited sources actually write. 
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cords in some tables; there is in principle no limit. Most DBMSs, on the other hand, have compara-
tively low limits on the number of attributes that can be declared. Microsoft Access allows a maximum 
of 255 columns for each table.  
 
There are quite a few alternative terms for these database fundamentals: A record (table row) is for-
mally known as a tuple.12 A table (relation) is also known as a file. We will avoid this term since it 
invites confusion with files on a computer disk; for example, Microsoft Access stores all tables of a 
database in a single disk file, while some DBMSs (such as MySQL) use several disk files for informa-
tion belonging to one table. Attributes are sometimes called fields (because they correspond to input 
fields in the user interface), or just properties. 

3.1 Keys and foreign keys 
 
The notion of key is central to relational databases. A key for a table is a set of attributes (but usually 
just one attribute) that will always uniquely identify a record in that table. In the above example, the 
language name, ISO code, and number of speakers are all unique; but the number of speakers, and 
even the name, are not guaranteed to be unique (for instance, all extinct languages have the same 
number of speakers). Only the ISO code is, by design, guaranteed to be unique. The keys of a table are 
sometimes also called candidate keys; a table can have several. 
 
Our real-world knowledge allowed us to identify a key in this table; since a DBMS cannot be expected 
to guess which sets of attributes can serve as keys, there is a way to declare them. The primary key is 
an attribute, or set of attributes, that the DBMS will use to uniquely identify records. The DBMS will 
enforce this uniqueness, refusing to create two records with the same key value. By convention, the 
primary key is indicated by underlying:  
 

Language name ISO code Speakers Area SourceID 

English eng 309,000,000 Europe Eth15 

(etc.)     
 
A key that consists of more than one attribute is called a composite key (as opposed to a simple key). 
While a database table can have several different candidate keys, it will only have one primary key 
(which might, of course, be composite).  
 
Keys are involved in expressing relationships between tables. (Note that a relationship should not be 
confused with a relation, which is just a table). A relationship in a database expresses a real-world re-
lationship between the objects described. For example, our table of languages contains the attribute 
SourceID, which indicates the bibliographic source of the information. Our example database also 
contains another table, whose records are not languages but bibliographic sources (books, articles, and 
other publications). A record in the Language Details table13 is now related to a record in the Biblio-
graphic Source table, by a relationship we might describe as “contains information from.”  

To encode the relationship in the database, we store with each record in the Language table a value (in 
the attribute SourceID) that matches the primary key of a record in the Bibliographic Source table; in 
the example below, this is the value “Eth15”. We say that the attribute SourceID is a foreign key.  
 
More generally, a foreign key is an attribute (or set of attributes, if it’s a composite key) within one 
table, that matches the primary key of some (other) table. A foreign key expresses a relationship be-
tween the two tables. The DBMS can ensure that every foreign key really matches the key of a record 

                                                 
12Abstractly, a table represents a relation, defined mathematically as a collection of  “tuples” (triples, quadruples, 
etc.) of values for some attributes. For example, the triple (Dyirbal, dbl, 40) represents the name, ISO code and 
recorded population of a language. 
13 Now that we have more than one table, it is useful to identify them by name. 



12 

in the related table, e.g., by refusing to store non-matching values. In the following, we use a star after 
the attribute name to indicate that it is a foreign key. (This is not standard notation). 
 

Language Details 
Language name ISO code Speakers Area SourceID* 

English eng 309,000,000 Europe Eth15 

(etc.)     
 

Bibliographic Source 
ID Title Author Year Publisher …

Ashton47 Swahili grammar (including into-
nation) 

Ashton, E.O. 1947 Longmans  

Eth15 Ethnologue: Languages of the 
world, Fifteenth Edition 

Gordon, Raymond G., Jr. 
(ed.) 

2005 SIL International  

(etc.)      
 
3.2 Retrieving data with SQL 
 
The names of several DBMSs have already been mentioned, and the reader may have noticed that 
more than one of these includes the string SQL in its name. This is indicative of the importance of 
SQL in the field of databases. As already mentioned, SQL stands for Structured Query Language, a 
language used interactively and by programs to query and modify data and to manage databases. With 
the partial exception of FileMaker, all commonly-used relational DBMSs support the use of SQL, and 
we recommend that anyone involved in a database project acquire familiarity with the basics of the 
language.14 
 
Although SQL can be used for a variety of database operations, such as inserting data, deleting data 
and creating new tables, its most visible function (as the name suggests) is for expressing queries: 
specifying data to be retrieved from an existing table or tables. Queries minimally consist of two parts: 
a specification of the field or fields to be retrieved and a specification of the table in which those fields 
will be found. These two aspects are represented in SQL by a SELECT command containing a FROM 
clause. For example, the following SQL statement will retrieve all the language names recorded in the 
Language Details table shown above:15 
 

SELECT “Language Name” FROM “Language Details”; 
 
More than one field can be specified in the SELECT clause. Multiple fields are separated by commas, 
as in the following example which retrieves language names and speaker populations: 
 

SELECT “Language Name”, Speakers FROM “Language Details”; 
 
Typically, when we construct a query, we are interested only in records which match a certain crite-
rion. Such restrictions are expressed in SQL using a WHERE clause. WHERE clauses usually express 
a condition on some field of the table being queried; this need not be one of the fields from which data 

                                                 
14 SQL is recognized as a standard by ISO, the International Standards Organization; however, actual database 
implementations always have limitations, extensions or other differences from the standard, which are significant 
enough that complex SQL scripts are typically not portable from one DBMS to another. Nevertheless, the basics 
of manipulating tables are nearly the same, and an understanding of the workings of SQL allows one to work 
with any SQL implementation. 
15 The quotation marks ( “ ) around table and field names are necessary for names that contain a space; other-
wise, they can be omitted. A semicolon ( ; ) signals the end of an SQL command, which can continue over sev-
eral lines of text.  
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will be retrieved. The first of the following examples will retrieve the names of the languages in our 
table for which the number of speakers is more than 500,000, the second would retrieve both language 
names and speaker populations given the same condition: 
 

SELECT “Language Name” FROM “Language Details”  
WHERE Speakers > 500000; 
 

SELECT “Language Name”, Speakers FROM “Language Details”  
WHERE Speakers > 500000; 

 
The above queries do not specify the order in which the matched values should be presented. In this 
case they will probably be presented in the order in which they are stored in the table, but the rules of 
SQL do not guarantee this. If we wish to display the results of our query in a particular order, e.g., al-
phabetically by language or ordered by size of speaker population, this can be accomplished by using 
an ORDER BY clause. Such clauses allow us to specify which field (or fields) will be used to sort the 
data, and whether the order should be ascending or descending. The following example will return a 
list sorted in ascending order of speaker population – ascending order is the default and need not be 
specified explicitly: 
 

SELECT “Language Name”, Speakers FROM “Language Details”  
WHERE Speakers > 500000  
ORDER BY Speakers; 

 
All the examples given so far have retrieved data from a single table. One of the important features of 
a relational database is that queries can be carried out which access more than one table; in SQL this is 
accomplished using a JOIN clause. In its simplest form, such a clause specifies a combination of two 
tables from which data will be retrieved and a join condition based on a field which the two tables 
have in common, typically the foreign key field in one table and its source in another table. The fol-
lowing example will retrieve the titles and authors of all sources used for the languages of Europe, 
along with the names of these languages. Because two tables might use the same name for some fields 
(e.g., “ID”), an extended syntax can be used to specify field names: TableName.FieldName.16 
 

SELECT “Language Details”.“Language Name”, Title, Author 
       FROM  “Bibliographic Source” JOIN “Language Details”  

  ON “Bibliographic Source”.ID = “Language Details”.SourceID 
 WHERE “Language Details”.Area = ‘Europe’; 
 
Conceptually, a JOIN operation creates a new, transient table, created by combining the rows of its 
constituent  tables according to the join condition (the ON clause). The main SELECT clause then op-
erates on this resulting table.17 The JOIN operation creates one row for each combination of records 
(rows) that satisfy the join condition; this means that any table row that matches multiple rows of the 
other table will be used multiple times. In our example, a single bibliographic source can be used for 
several languages, and the joined table will include rows like these: 
 

                                                 
16 Prefixing the table name is optional if the field name appears in one table only. 
17 Note that this is a conceptual description; such tables exist only in the sense of representing the stages of the 
query. The DBMS can usually figure out which rows and columns of the join table are needed for the final result, 
and will construct those alone without generating the entire intermediate table. In any event, such tables are not 
permanently stored in the database. 
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From Language Details table From Bibliographic Sources table 

Lan-
guage 
name 

ISO 
code 

… SourceID ID Title Author … 

English eng  Eth15 Eth15 Ethnologue: Languages 
of the world, Fifteenth 

Edition 

Gordon, Raymond G., 
Jr. (ed.) 

 
 

Italian ita  Eth15 Eth15 Ethnologue: Languages 
of the world, Fifteenth 

Edition 

Gordon, Raymond G., 
Jr. (ed.) 

 

Swahili swh  Ashton47 Ashton47 Swahili grammar (in-
cluding intonation) 

Ashton, E.O.  

Halh 
Mongo-

lian 

khk  Eth15 Eth15 Ethnologue: Languages 
of the world, Fifteenth 

Edition 

Gordon, Raymond G., 
Jr. (ed.) 

 

        

 
The Source record with ID Eth15 has been paired with each language that gives Eth15 as its SourceID. 
From this temporary table, the SELECT query will retrieve only those rows that match the WHERE 
clause (in our example, those with Area = ‘Europe’); finally, the result of the SELECT query is a new 
transient table that contains only the requested columns of these rows: 
 

Language 
name 

Title Author 

English Ethnologue: Languages of the world, Fif-
teenth Edition 

Gordon, Raymond G., Jr. 
(ed.) 

Italian Ethnologue: Languages of the world, Fif-
teenth Edition 

Gordon, Raymond G., Jr. 
(ed.) 

(etc.)   
 
This sort of table manipulation, explicit or implicit, is the essence of the “relational algebra” underly-
ing the operation of relational databases: Operations on tables return other tables, which can them-
selves be operated upon. Multiple JOIN and SELECT statements can be combined in a single query in 
various ways, allowing extremely powerful manipulations of the data.  
 
Data retrieval with SELECT is only one of the many functions of SQL; almost any database operation 
can be controlled with SQL commands. There are commands to create and delete databases, control 
access rights, and to add, delete or modify stored data. As already mentioned, we recommend that 
anyone involved in planning or implementing a database should acquire familiarity with the basics of 
SQL. This knowledge is very useful when considering the possible design of a database: one should be 
able to see what sort of queries would be of interest to the potential users of the database, and to ex-
press these queries in SQL using the names of tables and fields as specified in the design. If this 
proves difficult to do, then possibly the design needs rethinking. 
 
 

4. How data is stored in databases 
 
4.1 Data types 
 
DBMSs allow us to specify what type of data we wish to store in any particular column of a table. 
While all data is in the end stored in some sort of binary format, the data type of a field determines 
how it will be treated by the DBMS. There is a temptation for beginning database creators to ignore 
this factor, and to define all columns as fields holding text data. However, there are several reasons 
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why this is not good practice, and we will discuss some of these as we introduce the most important 
data types. 

The most important data types are text, numbers, and Boolean (or “logical”) fields; all databases have 
additional data types and, partly for technical reasons, numerous subtypes of the core data types. In 
particular, each DBMS will offer several types of integer fields, differing in their size and (therefore) 
the range of numbers they can store, and several types of text fields with options for controlling the 
maximum amount of text that can be stored in them. The specific types and subtypes offered depend 
on the DBMS, as do the names by which they are known.  
 
Conceptually the simplest type of data is Boolean data, that is, a field which can only have the values 
True or False. Boolean data is efficient to store and use, since a Boolean field nominally needs only 
one bit of memory and can therefore be stored extremely compactly. This type of data is frequently 
used in typological databases, where many fields may contain information about whether a given lan-
guage has a certain property or not.  
 
Numeric fields are for storing numbers; linguistic databases generally make little use of numbers (ex-
cept for automatically-generated IDs or as indices into a list of possible values), but they are of great 
importance for applications in business and the quantitative sciences. DBMSs provide a variety of 
numeric types, with different storage requirements. Typical examples are small integers (x < 256), 
which require one byte of memory, 18 large integers which use up to eight bytes, and one or more sizes 
of  “floating point” fields, which store non-integer (“real”) numbers.19 
 
For a database that will include numeric data, there are immediate and obvious disadvantages to stor-
ing numbers in a text field: Such fields are not considered numeric by the database, but are treated as 
simple sequences of characters (which happen to contain digits). If sorted, they will be alphabetized 
like names, with 1, 10 and 1,000,000 appearing before 2 or 20. They cannot be added, multiplied, or 
compared for magnitude with other numbers; for example, the following query (given as an example 
in the preceding section) is only meaningful if the field Speakers has a numeric data type: 
 

SELECT “Language Name” FROM “Language Details”  
WHERE Speakers > 500000; 

 
The most complex core type, and the one that requires the most storage capacity, is text data. One 
strategy which DBMSs use to contain the demands on memory of fields containing text data is to al-
low the designer to specify the number of characters allowed in a given field. Databases historically 
provided fixed-length text fields, which always reserve space for a fixed number of characters whether 
it is needed or not. Today’s DBMSs also provide variable-length fields, which only take up the amount 
of space actually used for each string (plus some overhead for encoding the length of the field). The 
database designer can specify a maximum length, up to a limit imposed by the design of the DBMS; 
the most efficient text type (known as Varchar in MySQL, and as Text  in Access) is limited to 255 
characters. Every DBMS also provides a data type for long strings; this might allow up to 65,535 
characters. Short and long text types may come in fixed-length and variable-length variants.20  
 
Because variable-length text fields only use as much storage space as they need, there is no need to 
severely restrict the maximum size of strings in the design of the database; we recommend making all 

                                                 
18 The basic unit of storage for information in a digital computer is one binary state, known as a bit. These are 
then organized into groups of eight, known as bytes, which have 28 or 256 possible values. 
19 Floating point numbers are represented as an exponent plus a fixed number of “significant digits,” and can 
store extremely large or extremely small numbers, with some loss of precision. E.g., the number 
602,214,141,070,409,084,099,072 can be represented as 6.0221414 x 1023 (In a database, exponent and signifi-
cant digits are in binary, not decimal form). 
20 Long strings are known as Memo in Access, and as Text in MySQL. (Therefore, “Text” means very different 
types in these two DBMSs). Access does not have fixed-length strings. 
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text fields long enough to contain any foreseeable data. The short-text type should be preferred to long 
text, for strings that are not expected to exceed 255 characters. (You should consult your database 
manual to check that the data type you are using is indeed variable-length). 
 
The full inventory of database data types is quite a bit more complex than we have sketched here. 
Most DBMSs also have special numeric types for dates, times, and currency amounts. Access has a 
special text data type for hyperlinks. Specifying a field to contain data of one of these types has conse-
quences for integrity at data entry (see below), and also allows a range of specialized operations to be 
performed on the data. For example, if a field is specified to contain only dates, then the exact format 
to be used can also be specified and the user interface will provide the user with a mask, a template 
which will only accept data of the required format. Many DBMSs also allow the database designer to 
declare the character encoding (see next section) used in a text field, or in an entire table or database. 
This can affect data validation, sorting alphabetically, and searching. Finally, many DBMSs provide a 
special data type for arbitrary large blocks of binary data, which the database will store without know-
ing anything about their internal format. 

Another data type that is of particular interest to linguists is the enumerated type, which restricts a 
field to taking values from a list specified by the database designer. For example, the property Basic 
Word Order can be modeled as an enumerated attribute that takes values from the set (SVO, SOV, VSO, 
VOS, OSV, OVS, Free). This is an extremely useful construct, and one that is very frequently applica-
ble in linguistics since a lot of properties take values from a fixed set of options. Relying on an enu-
merated type restricts the data which can be entered in a field, and therefore lessens the risk of input 
errors and inconsistencies (for example, if one types “S-V-O” instead of “SVO”, which is recognizable 
to a human but will be treated as a distinct value by the DBMS). While some databases define an 
enumerated data type, it is also easy to model in the user interface, or by using foreign keys. We will 
see how in section 7. 
 
We should not end our discussion of data types without mentioning that DBMSs typically allow a field 
to be null, i.e., to have no value at all. Nulls require care by the database designer, since their behavior 
in queries and arithmetic operations can be surprising. A text field whose value is the empty string is 
different from a null text field, and a null numeric field is different from any numeric value (including 
zero).  
 
We have seen, then, some of the properties of the various data types and the benefits of utilizing them 
properly. One other reason for adopting the discipline of data typing is that it can minimize problems 
in the processing of the data at the user interface. When routines are defined in a scripting or pro-
gramming language, variables will be used to hold data for processing. Such variables must be typed 
in many scripting languages, and it is always good programming practice to do so even if it is not re-
quired. If the types assigned to the data fields in the tables which supply data for processing do not 
correspond to the types assigned to variables, runtime errors can occur. Tracking down and correcting 
such errors is very time-consuming, but they can be avoided by the correct use of data typing. Finally, 
the benefit of data typing can also be viewed in a rather more conceptual sense. A theme which runs 
through this chapter is that being able to think precisely about the nature of one’s data is an essential 
skill in working with databases. Data typing can be viewed as one aspect of that skill: if we cannot be 
precise about the type of data we intend to store in a particular field of our database, then we are not 
thinking about the problem with sufficient precision. 

4.2 Character encodings 
 
Linguists often require access to characters beyond those normally available on a standard Roman al-
phabet keyboard. The characters of the International Phonetic Alphabet (IPA) are needed for phonetic 
transcription, and different character sets are needed for the standard written representation of many 
languages. Many linguists will have had the experience of carefully ensuring that the necessary char-
acters are included in a document only to see them vanish completely when the file is opened on a dif-
ferent computer. Such problems arise from the way in which character encodings are internally repre-
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sented by computers. Each character is represented as a number, but the mapping between characters 
and numbers is arbitrary and may vary from one operating system to another, and even from one font 
to another. The basic characters of a Roman keyboard do have standardized codes, provided by the 
American Standard Code for Information Interchange (ASCII). Later systems based on ASCII, espe-
cially ISO 8859, provide standard mappings for other writing systems. ISO 8859 includes Cyrillic, 
Arabic, Greek, Hebrew and Thai characters, as well as various extensions of the core Latin character 
set. The IPA characters are not included. 
 
However, all such schemes faced one basic obstacle, which is that they were designed to use one byte 
of data for each character. This limits the number of characters which can be encoded to a maximum 
of 256, the number of distinct values of an eight-bit binary number. Accordingly, ISO 8859 provides a 
family of separate encodings for the different alphabets it supports. In each of those, the first 128 val-
ues (expressible as a seven-bit number) are identical with the ASCII encoding, and contain the stan-
dard English letters (capital and lower case), punctuation and numbers, and a number of whitespace 
characters and control codes; the remaining 128 values, the so-called “high page” of the character ta-
ble, are different for each encoding defined by ISO 8859. For example, ISO-8859-1 (also known as 
Latin-1) provides accented characters and other symbols needed for Western European languages; 
ISO-8859-5 covers Cyrillic, ISO-8859-7 Modern Greek, etc.   
 
The problem with using a family of eight-bit encodings is that it is difficult to mix text from different 
alphabets. Since each encoding includes ASCII as a subset, a file that uses the-ISO 8859-7 encoding, 
for example, can contain a mixture of Greek and English text. But there is no simple way to mix Cyril-
lic and Greek, or Cyrillic and French: ISO 8859 does not provide a way to indicate which encoding is 
being used, or to switch between encodings. To manage multi-lingual text, a database or other applica-
tion must provide its own way of keeping track of the character encoding used.21 HTML pages and 
Microsoft Word documents each have their own way of accomplishing this; but desktop database ap-
plications are not designed to allow fine control over text encoding – database fields are generally 
meant to contain “flat” text, without invisible embedded codes, and the encoding can usually be set as 
a database-wide option, if at all. For a cross-linguistic database, this is a severely restrictive state of 
affairs. 
 
Every font uses some encoding scheme to map character codes into character shapes (“glyphs”). Be-
cause ISO 8859 does not include an encoding standard for IPA characters, IPA fonts used various arbi-
trary mappings. In effect, each IPA font defined its own encoding, an alternative to the standard encod-
ings of ISO 8859.22 All this made a change of fonts a potentially disastrous affair, since a string of 
Russian, French or IPA text could suddenly turn into nonsense when displayed with an incompatibly 
encoded font. 
 
Such limitations, as well as the proliferation of other incompatible encodings, led to the formation of a 
working group in the mid 1980s whose aim was to establish a comprehensive and universally recog-
nized scheme for the digital encoding of character data. The outcome of the work of that group and its 
successor, the Unicode Consortium, is Unicode. Unicode is a single, universal character encoding 
scheme, originally based on two-byte codes (giving it 65,536 potential “codepoints”) and later gener-
alized to abstract codepoints that are independent of the number of bytes used to represent them. Uni-
code 5.1 covers over 100,000 symbols, and each is assigned its own codepoint.  
 
Unicode makes a principled distinction between character symbols and glyphs, the visual shapes used 
to represent them. For example, the character A (“capital A”) can be represented with any of the 
glyphs A, A, A, A, A, etc. A single glyph may also correspond to a combination of several characters: 

                                                 
21 Another standard, ISO 2022, includes a means of switching between encodings; this still requires the applica-
tion to keep track of the “current” encoding at any point in the text. This system is not very widely supported, 
and is increasingly being supplanted by Unicode (see below). 
22 SIL eventually adopted a consistent mapping for all their IPA fonts, which has also been used by some inde-
pendent IPA fonts. 
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For example, many fonts include a glyph for the typographical “ligature” [fi], which represents [f] and 
[i] together.  
 
Unlike most earlier encoding schemes, Unicode in principle treats any element which can form part of 
a character as a separate symbol (“character”). For example, Unicode treats the letter [e] as one sym-
bol and the acute accent as another one; each is assigned to a different codepoint. The character [é] is 
therefore made up of two symbols in Unicode.23 This approach has admirable conceptual clarity, but it 
does also pose problems for rendering complex characters which are made up of several symbols. 
Fonts provide glyphs for common combinations of letters and accents (such as [é]), which often look 
better than the direct combination of the separate glyphs; some applications and display systems can 
automatically substitute such combined glyphs for the two-symbol combination, but others cannot. 
 
The 100,000 plus symbols of Unicode 5.1 include coverage of all major scripts of the world: European 
alphabets, Middle Eastern scripts including Arabic and Hebrew, Indian scripts including Devanagari, 
Bengali, Tamil, Telugu and Thai, Chinese, Japanese and Korean characters, a number of historically 
important scripts such as Runic, Ogham and Gothic, and the symbols of the IPA. Unicode is therefore 
a development of great significance for linguists, providing a standardized scheme for encoding char-
acters from most of the writing systems used by the world’s languages. In terms of the portability of 
data (Bird and Simons 2001), it is highly desirable that linguists should use Unicode for all of their 
work with language data.24  
 
There are however some practical problems which arise in using Unicode. Firstly, there is a crucial 
difference between encoding and rendering. As we have said, Unicode provides an encoding for a 
huge range of characters, and that encoding is stable across hardware and software platforms. How-
ever, in order to make practical use of this capability, the computers on which files are opened must be 
equipped with fonts that include glyphs for the characters which have been encoded. Although all ma-
jor manufacturers support Unicode in principle, availability of wide-coverage fonts is proving to be 
slow in coming. Currently, for Windows machines, Arial Unicode MS is included as part of Microsoft 
Office (and thus is not installed on all computers by default). It has coverage of 50,377 codepoints 
which equates to 38,917 characters, including IPA and most major scripts. Rendering is in general very 
accurate, but there is a known bug which affects the rendering of double-width diacritic characters: 
these consistently appear one character to the left of their true position. Such problems will eventually 
disappear as new software versions are released, but in the meantime they cause considerable incon-
venience. 
 
There are other Unicode fonts which are valuable for linguistic work, of which we will mention only a 
couple. Lucida Sans Unicode has well-designed IPA symbols, but limited coverage of non-Latin writ-
ing systems. The Doulos SIL font family, distributed freely by the Summer Institute of Linguistics 
(http://scripts.sil.org/TypeDesignResources), is designed specifically to render IPA characters. It cov-
ers all IPA symbols and diacritics, which are rendered very accurately, but otherwise has narrow cov-
erage. Numerous other Unicode fonts are also available from SIL, and more are under development. 
The Gentium font, in particular, provides wide coverage but is still under development (it has no bold 
typeface yet, for example). 
  
A valuable resource for all issues related to Unicode fonts is the webpage authored by Alan Woods 
(http://www.alanwood.net/unicode/), and some specialist advice on Unicode and IPA is provided by 
John Wells (http://www.phon.ucl.ac.uk/home/wells/ipa-unicode.htm). The SIL pages also provide a 
wealth of information. 

                                                 
23 In fact, in order to maintain heritage encodings from ISO 8859, Unicode also includes [é] as a single character. 
Unicode defines “normalization” tables that decompose such characters into the corresponding sequence of sim-
ple characters. There are also tables for normalization in the opposite direction (wherever such combined sym-
bols exist). 
24 For those seeking more information about Unicode, Gillam 2003 provides a detailed but accessible introduc-
tion. 
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The second issue which arises in using multi-lingual text, in Unicode or in any other encoding, is that 
of data entry. Standard software packages such as Microsoft Office provide only limited facilities for 
inputting data in non-Roman characters. The Insert-Symbol command in Word allows such characters 
to be accessed, but it is designed for inserting single characters and is far from adequate for working 
with sizeable bodies of text in non-Roman writing systems. There are two basic approaches to this 
problem, although in practice the two sometimes overlap. Firstly, it is possible to redefine the mapping 
between the keyboard and the characters it inserts; this is most useful when a fixed set of characters 
will be used extensively (e.g., for IPA input), and the user can memorize the new layout or at least 
learn to find needed symbols quickly. 
 
For Windows computers, the best known keyboard-remapping utility is Keyman 
(http://www.tavultesoft.com/keyman/). This is a powerful tool but, at least in previous versions, it had 
some drawbacks.25 Keyman is a system-level tool: changing to a different keyboard mapping should 
alter the behaviour of the keyboard for all software. But because of the way keyboard input is handled 
in Windows, this is not actually possible, and the versions with which we have had experience have 
not in fact operated consistently in this fashion. In particular, the keyboard remapping did not operate 
at all when using the Microsoft Access DBMS (for further details, see Musgrave 2002). In previous 
versions, it was also quite difficult to create new keyboard mappings; one was reliant on mappings 
which had been created by other users and made available online. The current version seems to ad-
dress this problem. 
 
The solution which we prefer, therefore, is to use a specialized tool to edit Unicode text and then to 
import the prepared text into the database with which one is working. This approach, in our experi-
ence, allows much greater control over the process of producing accurate Unicode text.  
 
For projects that do not involve intensive use of a single keyboard layout, it is sometimes most con-
venient to use an on-screen keyboard application. The user enters the desired text by “pressing” but-
tons displayed on the screen, and then pastes it to the database or another destination. Because it is 
easy to switch between sets of symbols and the symbol inserted by each key is always visible on the 
screen, this is a convenient method for moderate or light use. The TDS IPA Console 
(http://languagelink.let.uu.nl/tds/ipa/) is a java application specialized for IPA text entry; the on-screen 
keys are arranged in the shape of the familiar IPA symbol charts, and the application can be easily cus-
tomized with additional symbols not included in the standard layout. There are also webpages that 
provide on-screen keyboards with similar functionality, but these cannot be customized. 
 
Two other tools which are valuable for this purpose, again for Windows computers only, are Sharmahd 
Unipad and ELAN. Unipad is a Unicode text editor. A basic version is available for free download, but 
registration and payment is necessary for full editing capability. The program offers two modes for 
entering data: one can either select characters from a tabular representation of the Unicode character 
set, laid out in planes, or one can use a keyboard redefinition. The editor comes with a large number of 
keyboards (approximately 50) pre-defined, and several others are available from the Unipad website. 
But it is also possible to create custom keyboard layouts very easily; all that is involved is dragging the 
desired characters from the Unicode planes and dropping them onto the desired positions on a key-
board layout on the screen. When selected as the active keyboard, a mapping affects the behavior of 
the keyboard, but only in the Unipad editor. The keyboard can also be viewed on the screen, and char-
acters can be entered by clicking on them with the mouse. The great advantage of this tool is that it is 
so easy to create special keyboards. If one is entering phonemic transcriptions of data from one lan-
guage, access is needed to some of the IPA symbol set, but typically only a subset of those characters 
are used. Rather than having to negotiate a keyboard mapping which provides access to all the IPA 
characters, it is possible to make a keyboard with only those that are needed, with a significant gain in 
efficiency.  

                                                 
25 We do not currently use this program and therefore we cannot comment on the performance of later versions. 
We also note that the tool was previously distributed freely, but is now distributed commercially. 
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ELAN is a tool for creating time-aligned annotations linked to media files, and is increasingly being 
used by linguists for transcribing primary data. We use it as an example of an indirect scenario for data 
entry: In many cases, the data entered into the database does not come directly from off-line sources, 
but from another electronic resource such as typed field notes, or (as in this case) a transcribed corpus. 
ELAN was designed and implemented by the technical team of the Max Planck Institute for Psycho-
linguistics, Nijmegen, and is distributed freely (http://www.lat-mpi.eu/tools/elan/). ELAN files are a 
specialized type of structured text file, saved in Unicode format; various aids to entering non-Roman 
characters are included in the interface. The user can access various keyboard remappings directly 
from the interface, with seven languages supported and some in multiple mappings. Two methods for 
entering IPA characters are also available, one using the SAMPA computer-readable phonetic alphabet 
(http://www.phon.ucl.ac.uk/home/sampa/), and the other using the Roman Typographic Root method. 
This requires the user to type the Roman character closest to the desired symbol and then select the 
symbol from a list which appears. The capabilities of ELAN for entering non-Roman characters are 
less sophisticated than those of Unipad, but for linguists who already use it for transcription, it has the 
advantage of allowing data entry into the database to be incorporated in their existing workflow. 
 
4.3 Multimedia in databases 
 
Recent technical advances have made feasible the presentation of linguistic data as audio or video ma-
terial, or graphics. This advance opens up significant new possibilities for the discipline, and it is de-
sirable to include such material in linguistic databases. While it is possible to store such content di-
rectly in a database, the relatively large size of audio and video recordings (relatively to the rest of the 
data) often makes it convenient to store such materials separately, and access them by storing links to 
them in the database. 
 
Desktop DBMS packages now typically allow the content of a field to be a Uniform Resource Locator 
(URL) which points to a multimedia resource. The interface must include the necessary functionality 
to access the resources and present them to the user as required. A web-based database can easily han-
dle multimedia, since web browsers already support multimedia content (sometimes via helper appli-
cations): Again, fields in the database can be used to store URLs, and the user interface scripts are 
programmed to present the relevant resources as hypertext links in the generated web pages. 
 
A simpler application is the dynamic generation of maps or other graphics (e.g., statistical graphs or 
charts) on the basis of data in the database. On a web database, this can either be done “server-side” (a 
graphics manipulation plug-in on the webserver creates an image on the fly, which is sent to the user’s 
browser for display) or “client-side” (a fixed image, such as a map of the world, is sent to the user’s 
browser along with a script that controls the placement of additional information on it). A common use 
of the technique are the familiar typological maps, which display the distribution of one or more lin-
guistic features as color-coded dots at the canonical geographical location of each language.26  
 
 
5. Designing a database 
 
5.1 Preliminaries 
 
The relational database model is a simple, but very powerful basis for organizing data in a database: A 
relational database is a collection of tables, related (linked) to each other by means of foreign keys. 
                                                 
26 Currently, the state of the art for such maps is to embed in the database interface a service provided by Google 
Maps: The Google service creates and manages a map of the world (or the desired part of it), which appears as 
part of the database interface. Behind the scenes, the database supplies geographical locations and annotations 
which are placed on the map by the user’s browser. A skilled programmer can set up the complete system in a 
few days. The websites of the World Atlas of Language Structures (Haspelmath, this volume) and the Typologi-
cal Database System (Dimitriadis et al., this volume) utilize this method. 



21 

This so-called relational structure of tables and relationships determines the essential nature of a da-
tabase: The user interface can present data in a very different way (or in many different ways, as we 
have seen), and there are additional features at the database level, such as indexes and access control 
directives; but these only build on the core properties of the database, which is determined by its rela-
tional structure. 
 
So what is the right relational structure for a database? This depends on the situation, of course: on the 
nature of the data, and on its intended uses. Naturally, a database must have a way to store all informa-
tion it is meant to contain; and this information must be organized in a way that allows it to be entered, 
viewed and modified in a straightforward way. There is a voluminous literature on the topic of how to 
design a database, with countless competing methodologies, procedures, and rules of thumb. While the 
database specialists disagree among themselves on the details, the underlying principle is simple: 
 

The structure of the database should reflect the logical organization of the data. 
 
In particular, it is not the end-application or the user interface that determines how the database should 
be organized. If a database has a relational structure that suits the data, it will support any desired use 
of it (possibly after technical elaborations such as indexes, etc.). Conversely, incorrect design can 
make it impossible to put the database to new uses, or even to store all collected data. As a simple ex-
ample, suppose that we are collecting information on reflexives, and design a database that allows ex-
actly one reflexive per language. This design will require awkward conventions and work-arounds as 
soon as we encounter a language with two reflexives we need to describe. 
 
An appropriate database design will have the following properties: 
 

1. It will represent the required data and appropriate relationships between the units of data. 
2. It will provide a model of the data that supports the operations that will need to be per-

formed: entering, searching, and modifying data in the database. 
3. It should be the simplest way to accomplish these tasks with acceptable performance. 

 
The last consideration has mostly escaped our attention until now, and to some extent goes against the 
first two: A database is not a theoretical exercise but a practical tool; it should not be more complex 
than it needs to be – but it should be complex enough. For example, a person’s name may consist of 
one or more last names, given names, connectives such as von, and perhaps other modifiers or honor-
ific titles (Jr., Professor). How this should be represented in a database depends on its purposes; a 
telephone directory or employee database should probably represent each of these parts separately, 
while a table of contributors to a linguistic database can often get away with fields for just a “first” and 
“last” name (loosely construed), or even a single field Name. For linguistic applications, the question 
is complicated by the theoretical perspective and goals of the database. In general, a database designer 
will model properties of the subject matter of the database much more precisely than other, peripheral 
properties. For example, while it is common to classify languages as having trochaic or iambic feet, 
this classification does not exhaust the range of variation in foot construction. The Stress Typology 
database (Goedemans and Van der Hulst, this volume), whose subject is the mechanisms of footing 
and stress assignment, provides a much more fine-grained set of classificatory parameters, from which 
the types iambic and trochaic can be computed as summary properties. 
 
A database, then, is a model of the real world – specifically, of the part of the world we are interested 
in. But a model is not the same as the real thing: the data in a database, and hence its structure as well, 
represent an idealization of the world that is sufficiently detailed for our purposes but sufficiently ab-
stract to be put into practice. Finding the right balance is something that comes with experience, and is 
arguably a bit of an art. 
 
5.2 Normalization 
 
To better understand the process of relational database design, we first consider two concrete proper-
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ties that a correctly designed database must have: 
 

1. Each cell in a database table should contain only one value (i.e., one piece of information). 
2. Each piece of information should be entered in the database only once. 

 
The process of discovering and correcting problems of this sort (and many similar ones) is known as 
normalization. A database that meets the first of the above criteria is said to be in first normal form. 
(The second of our criteria is addressed by several different normalization rules). 
 
Consider again our table of language details: Suppose that we want to add information about the basic 
word order for each language, and that our definition of “basic word order” allows a language to have 
more than one (or that we decide to record multiple categorizations in case of doubt); suppose, more-
over, that we decide to treat German as having both SOV and SVO basic word order. 
 

Language Details 
Language name ISO code ... Basic Word Order 

English eng  SVO 
German deu  SOV, SVO 

(etc.)    
 
The above table violates our first rule (is not in first normal form), since both word order values for 
German have been entered in a single cell. This practice creates all sorts of technical difficulties, be-
cause database searching and sorting operations are designed to treat each table cell as a complete 
value. This might seem harmless in this toy example, but the problems rapidly multiply as things get 
more complicated: if we add a field for the bibliographic source of the word order information, it may 
be necessary to add two sources in the cell for German, and to somehow indicate which source is re-
sponsible for the which word order classification. We might just give these details in plain text in the 
bibliographic source field; or we might decide to use special notation, perhaps a backslash, between 
multiple values, and to adopt the convention that the first reference corresponds to the first word order 
value, and so on. But these conventions are opaque to the DBMS (i.e., unknown and unusable); and as 
they multiply, they add complexity to the system which quickly grows beyond what can be reasonably 
managed.  
 
The solution is to structure the database in a way that allows multiple values for the word order attrib-
ute to be recorded for a single language. We replace our previous table, which provided one row for 
each language, with a new table Word Order, in which each row represents a basic word order of one 
language; German is then allowed to occupy two rows, solving our problem. Suppose, however, that 
our new table looks as follows: 

Word Order 
Language name ISO code Area Basic Word Order Reference* 

English eng Europe SVO Smith75 

German deu Europe SOV Jones84 

German deu Europe SVO Jones84 

(etc.)     

This table violates the second of our conditions: It contains three fields, Language name, ISO code and 
Area, that must be the same for all records that concern a German word order. In other words, all cop-
ies of these values give the same information, which should appear only once. (On the other hand, the 
two values of Jones84 on the Reference column do not represent the same piece of information: the 
SOV and SVO values might have come from different publications, so the fact that they are the same 
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could not have been predicted). The solution, here, is to have two tables: One for languages, contain-
ing information such as name, population etc. (as before), and a second one containing only informa-
tion related to the basic word order. The two tables are linked by means of a foreign key, Language ID, 
that must match the primary key (ISO code) of the Language Details table.27 
 

Language Details 
Language name ISO code Area Reference* 

English eng Europe Smith75 
German deu Europe Eth15 

(etc.)    
 

Word Order 
Language ID* Basic Word Order Reference* 

eng SVO Smith75 
deu SOV Jones84 
deu SVO Jones84 

(etc.)   
 
These kinds of concerns, then, are among the issues we must address when designing a database. In 
the following sections we consider the process of database design, beginning with the general princi-
ples before we turn to the specifics. 
 
5.3 The database design process 
 
Building a database is a complex undertaking. We present here a commonly used, top-down process 
following Connolly et al. (1999): First, we collect sufficient information to gain a proper understand-
ing of the problem; we then construct the database in several stages, beginning with a high-level 
model of the data domain. 
 

1. Work out your needs, in writing. Examine real data and/or any paper forms or printed materi-
als used for the same purpose in the past.  

2. Carry out the high-level conceptual design (abstract design) of the database. This means 
thinking about how our data is organized, without worrying about the specifics of tables, keys 
and attributes. 

3. In the logical design stage, we define tables and relationships that reflect the conceptual de-
sign. 

4. The physical design stage involves the actual programming of the database, taking into ac-
count the features and limitations of our specific DBMS and user interface environment (with 
which we build the database client). 

5. When the design steps have been completed, build the actual database. 
6. Try it out. 
7. Clarify your needs, and revise steps 1-6 as necessary. 

 
Databases are by tradition complex entities that support very large enterprises. Under such conditions, 
the cost of change increases enormously once a system has gone into use: imagine needing to take 
thousands of automatic teller machines off line in order to revise the database that keeps track of their 
transactions! While linguistic databases are much simpler, it is still essential that a database should be 
planned and built as carefully as possible before it goes into use. Testing will almost always reveal 
                                                 
27 We have not discussed the choice of primary keys for the two tables; we return to this type of example in a 
later section. 
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problems that can be easily corrected – as long as they are noticed at an early stage. It should also be 
noted that database-creation applications and tools are not built with the assumption that the design of 
the database might change at any time. If you add a new attribute to a table in Microsoft Access, for 
example, it will not automatically appear in existing forms for that table; the forms will have to be re-
generated and customized from scratch, or the new field will have to be manually added to existing 
forms (a more complicated process). 

The importance of planning ahead presents linguists with a chicken-and-egg problem: A research sur-
vey database is intended to collect data about a phenomenon that is not yet completely understood, so 
it is almost certain that an ideal model for it cannot be constructed until after data collection has been 
completed. We cannot address this difficult question here, beyond recommending the obvious: Do as 
much advance preparation as possible, and plan for change. For example, if the values for a field come 
from a fixed list (menu) of possible values, make sure that the list can be easily extended during the 
course of the project (and that someone actively involved in the project knows how to do it). 
 
5.4 Preparation 
 
Many databases are not designed by the people who are going to use them. It is important to collect 
the information necessary for the database designer to make the right decisions: 
 

1. What kind of data will be stored in the database? Collect some real data, in electronic or in 
paper form, of the kind that will be entered into the database. If a substantial body of relevant 
data exists already, it could reveal patterns that will not be apparent from just one or two sam-
ple records (or, worse, from fake “data” made up by the designer). 

 
If the data is to be collected by questionnaire, prepare one or two completed questionnaires 
(again, with real data), before the database design is even started. The questionnaire itself is 
also a big source of information; but be sure to distinguish clearly between what will be writ-
ten in the questionnaire and what will be entered into the database. For example, some ex-
ploratory questions might be intended to guide the consultant, and do not need to appear in the 
database; while some properties are not provided by the consultant, but will be determined by 
a database analyst on the basis of the completed questionnaire. 
 

2. What will be done with the data? Think about specific scenarios you want to be able to carry 
out, including data entry as well as searching and browsing: will people want to see a list of all 
the phonemes in a language? Should they be able to search by geographic region? Etc. Think 
about the research questions you hope to answer with the help of the database, and the kind of 
information you will need in order to do so. It is best to involve several people in discussing 
the use of the database.  

 
3. What kinds of users will be using the database? Typically, there will be privileged users who 

can enter and edit data in the database, and external users who can only search or display the 
data. For larger projects, there may be external consultants that should be given editing access 
to a single language only, etc. For a web database, it is common to initially restrict all access 
to authenticated users only, and to open up read access for external users after the data has 
been double-checked, and perhaps utilized for a particular research paper or dissertation con-
nected to the project.  

 
4. What will happen to the database after the conclusion of the project period? The data may be 

archived or made public on a separate web database; such future considerations can be taken 
into account during the database design, for example by providing suitable export functions 
and ensuring that appropriate standards are followed. 
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6. Conceptual design 
 
In the conceptual database design stage, we determine the organization of our data at an abstract 
level. This is necessary, since the particular properties of relational databases are too low-level, in 
ways that we will presently see. 
 
The core task in conceptual design is to identify the entities, i.e., idealized objects, that our database is 
about; and the relationships between them. More correctly, we must identify the entity types present 
in our database. An entity doesn’t need to be a physical object. Rather, it is a notion or concept that we, 
in our project, consider to have “an independent existence”, and can ask questions about. In other 
words, an entity is something that we collect data about. For a cross-linguistic survey database, we can 
start by identifying languages as entities that we will document: Our database might have information 
about German, Yoruba, Japanese, etc. We thus have our first entity type, Language. (Note again that 
our model must involve types, such as Language, rather than single objects such as German). 
 
In our example we provided directory information about languages, such as name, ISO code, popula-
tion, etc. These are attributes of the entity Language. (Entity attributes, as we will see shortly, are 
similar to the attributes of database tables but are more general). We also named a source for the in-
formation on each language. A book, or other bibliographic source, can also be said to have “inde-
pendent existence”: We can identify many attributes of a book, such as its title, author etc., independ-
ently of what we used the book for. We thus have a second entity type, Bibliographic Source. We also 
have a relationship between the two entity types: A bibliographic source can be Cited as the source of 
the demographic data on some language. 
 
The entity-relationship model we have constructed can be displayed in a so-called Entity-
Relationship diagram (E-R diagram). Each entity type is shown as a rectangle, with attached circles 
representing its attributes. The relationship is represented by a diamond, connected with lines to the 
two entities. The “crow’s foot” on the language side of the relationship indicates that multiple lan-
guages could cite the same source. 
 

 
 
Some heuristics for conceptual design 
 
Entities are things (or notions) that our database is about. If we record information about something, 
that “something” is a candidate for being modeled as an entity. 
 
To determine how to divide information into entities, and how to allocate attributes to them, consider: 
 

1. What information goes together? 
2. What information is dependent on other information? 
3. What should be updated or deleted together?  

For example, the vernacular text, gloss and translation of an example sentence clearly go together. It 
would make no sense to delete one of these while leaving the rest in the database (unless, of course, 
we are simply deleting an erroneous value until it can be entered correctly). 
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6.1 Relationships 
 
The E-R diagram shown above also indicates the cardinality of the relationship between the two enti-
ties, which indicates the number of separate relationships that a single entity can participate in. A rela-
tionship is one-to-one if only one of each entity can be related. For example, the relationship Is Capi-
tal Of always relates a city to a single country (or with none), and vice versa. A relationship is one-to-
many if one entity type can be related to several entities of the other type, but not vice versa. Exam-
ple: A relationship Location between cities and countries, since each city is in only one country (if we 
ignore the possibility of divided cities, or treat such cases as two cities), but a country could be the 
location of many cities. Finally, a relationship is many-to-many if both entity types can be related to 
multiple entities of the other type. As an example, consider the relationship Flies To, between airlines 
and cities. For a linguistic example, consider a relationship Occurs In, between morphemic gloss la-
bels and sentences. A particular gloss label can occur in many sentences, and each sentence can con-
tain many labels in its gloss. The cardinality of a relationship determines (along with other factors) 
how it will be represented in the relational structure of our database, which we derive in the logical 
design stage. 
 
A relationship can also be classified depending on whether it is obligatory for the participating entities. 
If every entity of some type must participate in a relationship, the relationship is total for that entity 
type; otherwise, the relationship is partial for that entity type. For example, every country has a capi-
tal, so Is Capital Of is a total relationship for countries; but some cities are not the capital of any coun-
try, hence Is Capital Of is a partial relationship for cities. Consider also the relationship Describes, 
between languages and reference grammars: every grammar describes some language, but there are 
languages for which no grammar exists; therefore the relationship is total for grammars, but partial for 
languages.  
 
6.2 Entity attributes and relationship attributes 
 
Entity attributes are a generalization of the attributes of tables. Like them, they express particular 
properties of the entity being described. Once we have identified the entities in our database, we solid-
ify the design by identifying the attributes that we are interested in recording. 
 
An attribute of an entity should depend only on the entity it will describe; for example, our language 
directory contains an entity type Language with information about languages, and an entity type 
Source with publication information (author, title, publisher etc.) about books and articles from which 
the information was drawn. In general, we also want to record the page number where a piece of in-
formation appears. Note that this is not a property (attribute) of the book itself; after all, we might have 
drawn many different pieces of information from different pages of a single book. Neither is the page 
number an attribute of the language. Rather, the page number is an attribute of the relationship 
Cited, which relates a language to a bibliographic source. In an entity-relationship model, relationships 
as well as entities can have attributes. 

In defining an attribute, we should have some idea of the possible values it may take; these are the at-
tribute domain, and might be a list of fixed strings, a number or monetary value (rare for linguistic 
applications), or perhaps free text. An attribute can also be classified as simple or complex, which re-
fers to whether the attribute consists of multiple distinct parts. For example, an entity Person might 
have a complex attribute Name that we further subdivide into First Name, Surname, etc. An entity at-
tribute is also allowed to be multi-valued; in our language directory example, Alternate Name is a 
multi-valued attribute. Similarly, Person might have an attribute Phone Number which we allow to 
take multiple values.28 An attribute that can only hold one value (the usual case) is said to be single-
valued. Exercise: Consider the entity Book (or Bibliographic Source). What kind of attribute is the 

                                                 
28 Recall that table attributes can only hold one value for each record. This is why we say that entity attributes are 
a generalization (abstraction) of table attributes. In our discussion of logical database design, we show how com-
plex and multi-valued attributes can be encoded in a relational database. 
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attribute Author? 
 
We have just suggested that Author is an attribute of the entity Book. But isn’t Author a separate entity, 
a special case of Person? The answer depends on our intended use for the database. Entities are things 
that we collect information about. Unless we intend to record biographical information about book 
authors, there is no reason to elevate them to the status of separate entities. An author is simply an at-
tribute of Book, as far as we are concerned. On the other hand, a native speaker consultant for some 
language is generally of more interest: We may want to record their particular dialect, language biog-
raphy, name and contact details, etc. Therefore we might decide to treat Consultant as an entity type in 
its own right. 
 
6.3 A common pattern 
 
Let us consider a linguistic example in more detail: A cross-linguistic database of reflexives includes 
data about reflexives in various languages; the entities in this database include Language and Reflex-
ive; a language may have several distinct reflexives that need to be described, but a reflexive can only 
be considered as belonging to one language at a time (numerous European languages have a reflexive 
se, for example; but the se of each language has its own distinct properties, hence we must speak of 
separate, homophonous reflexives that are described independently of each other). Exercise: what is 
the cardinality of the relationship between languages and reflexives? And is it partial or total for each 
entity involved?29 
 
Our database of reflexives will also include sentences exemplifying the use of reflexives; let us con-
sider the status of these sentences in the database design. We can begin by thinking of them as “exam-
ples,” which suggests that each sentence we record is obligatorily an example of some reflexive in our 
database. This is a common way of organizing a linguistic database. But we should point out that “ex-
ample” is really a relationship between a sentence and a reflexive; hence we can consider Sentence to 
be our third entity type (or Phrase, or Text) if our examples are not exactly one sentence in length), 
and we let Is Example Of be a relationship between sentences and reflexives.30 This point of view al-
lows us to use the same sentence as an example of several things (of two reflexives, perhaps, or of 
several properties of a particular reflexive); this perspective also allows us to record sentences in our 
database that do not contain any reflexive (maybe we include the sentences for contrast, or we will 
identify a reflexive construction later). In other words, we have decided to treat the relationship be-
tween sentences and reflexives as many-to-many (since we can also give multiple examples of the 
same reflexive, of course), and as partial for both entities. We arrive at the following design: 

 

                                                 
29 Answer: Every reflexive belongs to some language, hence the relationship is total for reflexives. However, we 
can conceive of a language with no reflexives (at least hypothetically), so the relationship is partial for lan-
guages. The relationship is many-to-one, since a language can have many reflexives, but a reflexive is by defini-
tion a property of a single language.  
30 More precisely, we can define a family of relationships of the type Is example of property X, where X is some 
property of reflexives that we are collecting information about (e.g., a morphological characteristic, a locality 
property, etc.) 

Language 

Sentence 

Construction  
(Reflexive) 
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This is an extremely common state of affairs for linguistic survey databases: The identifiable entities 
include Language, some form or Construction type that a language may have multiple varieties of, and 
Sentences that are used to exemplify each construction or some of its properties. To these three com-
mon entities we might add Source (for bibliographic references) and perhaps Person, for analysts, in-
formants or other human contributors to the database (we might also treat each class of contributor as 
a different entity type). 
 
If a sentence can only exist as an example of a reflexive, our database might allow users to browse 
sentences only by first selecting a reflexive, and then viewing the sentences that are linked to it. But if 
the relationship between sentences and reflexives is partial (for sentences), the user interface must 
provide a way to view or search for sentences which does rely on a reflexive that the sentence is an 
example of.  
 
Exercise: Is the relationship between sentences and languages total or partial for each entity? 
 
 
7. Logical design: From entities to tables 
 
The conceptual design of our database, represented as an Entity-Relationship model, indicates the im-
portant characteristics of our database at an abstract level, allowing us to focus on the foundational 
issues of database structure without getting caught up in the technical limitations of relational database 
tables. But once the conceptual design has been completed, it must be used as the basis for a concrete 
relational design involving tables, keys and relationships. This is the function of logical design, the 
second stage in the database design process. 
 
We can think of logical design as the process of converting an E-R model into a relational structure. In 
its simplest form, the conversion is as follows: 
 

1. Each entity type normally becomes a table;  
 
2. simple entity attributes become table attributes; 
 
3. simple one-to many relationships between entities become table relationships represented by a 

foreign key.  
 

More complex elements of the E-R model must be handled in other ways, which often involve the in-
troduction of additional tables in the database; these additional tables, therefore, do not correspond to 
entities in the E-R model. 
 
Let us consider the familiar example of the language directory; we have modeled it according to the 
following E-R diagram, which assumes that all information about a language will come from a single 
source. In other words, the relationship is one-to-many, with a given source (e.g. the Ethnologue direc-
tory) potentially providing information about several languages. 
 

 
 
The logical design for this model begins with two tables, one for Language Details and one for Biblio-
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graphic Source. Each entity attribute is represented simply as a table attribute.  
 
We then choose suitable primary keys: For the Language table, we chose the ISO code which is 
guaranteed to be unique for each language (assume that we do not plan to identify any languages not 
recognized by SIL, the ISO code authority). For the Source table, we define as the primary key an ar-
bitrary key chosen by the analyst entering the data, and expected to represent an author-year identifier 
in the customary style. However, the exact form of the arbitrary key is not important; we could have 
used an automatically assigned numeric value, which would require fewer decisions by the analyst but 
would have no mnemonic value. 
 
Once we have the two tables, we want to indicate that each record in the Language table cites as its 
source a single record in the Source table. We do this by including a foreign key, SourceID, as an at-
tribute of the Language table. This allows each language to be linked to just one source (since we are 
only allowed to enter one value for the SourceID attribute), with no restrictions on how many lan-
guages can be linked to a single source. In other words, this foreign key implements a many-to-one 
relationship between languages and sources: Many languages, one source.31 All told, we have trans-
formed the E-R diagram above into the following (already familiar) tables: 
 

Language Details 
Language name ISO code Speakers Area SourceID* 

English eng 309,000,000 Europe Eth15 
(etc.)     

 
Bibliographic Source 

ID Title Author Year Publisher ... 
Ashton4

7 
Swahili grammar (in-
cluding intonation) 

Ashton, E.O. 1947 Longmans  

Eth15 Ethnologue: Languages 
of the world, Fifteenth 

Edition 

Gordon, Raymond 
G., Jr. (ed.) 

2005 SIL Interna-
tional 

 

(etc.)      
 
In this simple example, each entity corresponds to a table and each relationship corresponds to a for-
eign key relationship; there is no real difference between the entity-relationship model and the rela-
tional schema. But now let us consider a database on some phenomenon, e.g., a database of focus con-
structions, which includes example sentences. As we have seen, such a database will have the entities 
Language, Focus construction, and Sentence. In the logical design, we model each of them as a sepa-
rate database table. But a single sentence might include instances of two or more focus constructions; 
i.e., the relationship is many-to-many. A foreign key in the Sentence table can only identify one con-
struction, and hence is insufficient. 
 
To encode a many-to-many relationship, we create a new table whose primary key is a combination 
of the primary keys of the two tables, Focus Construction and Sentence. (This is a complex primary 
key, consisting of at two attributes). Each record in this new table indicates a relationship between one 
construction and one sentence. Because the primary key (which must be unique for each table) is the 
combination of both keys, each sentence ID and each construction ID can be used multiple times. 
 

                                                 
31 If we had instead added a foreign key to the Bibliographic Source table, the relationship would allow many 
sources to be linked to a single language – not what we want, in this case. 
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Focus construction 
Name Language ID* … 

wa jpn  

  (etc.)   
 

Sentence 
ID Language ID* Original text Gloss Translation … 

101 jpn hono wa, ... book Top ... As for the book, ...  

(etc.)      

 
Focus-sentence (relationship) 
Focus ID* Sentence ID* 

wa 101 

wa 113 

  (etc.)  
 
 
 
Multi-valued attributes also require an additional table, which does not correspond to an entity in the 
entity-relationship model. Consider the language attribute Alternate Name, a multi-valued attribute of 
the Language Details table (since a language can have multiple alternate names). Each alternate name 
is a simple string, not an entity; but since we cannot store multiple values in a single attribute of the 
Language Details table, we create an additional table, Alternate Name, whose purpose is to store mul-
tiple names for a language. Each record in this table includes the language ID of the language that the 
record is about, declared as a foreign key that must match the primary key of the Language Details 
table, ISO code; because the language ID is not the primary key of the Alternate Name table, it is pos-
sible to have multiple records for the same language ID.  
 

Language Details 
Language name ISO code Speakers Area SourceID* 

Swahili swh 772,000 Africa Ashton47 
(etc.)     

 
Alternate Name 

ID Language ID* Name 
101 swh Kiswahili  
102 swh Kisuaheli 
103 swh Arab-Swahili 

(etc.)   
 
For illustration, the above table uses an arbitrary numeric primary key, ID; this allows us to enter any 
values we wish – even to enter the same alternate name multiple times for the same language. We 
could have instead declared the two attributes Language ID and Name as a complex primary key, 
which would make it impossible to accidentally enter the same alternate name twice for the same lan-
guage:32  

                                                 
32 It would still be possible to enter the same alternate name for different languages, of course. 
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Alternate name 

Language ID* Name 
swh Kiswahili  
swh Kisuaheli 
swh Arab-Swahili 
(etc.)  

 
Note that (with either version) the table Language Details makes no mention of the Alternate name 
property; the relationship is encoded in one direction only, by declaring the field Language ID as a 
foreign key that matches the primary key of the Language details table. 
 
A complex attribute (e.g., Name) does not need to be modeled in an additional table. We can simply 
model each component of the complex attribute as a separate table attribute (e.g., First Name, Sur-
name, etc.). 
 
We do need a separate table in the case of a relationship with attributes, even if the relationship is 
not many-to-many. Recall our example of a relationship with attributes, the Citation relationship in our 
Language Details example. We have seen that the page number on which a particular language prop-
erty is discussed is not a property of the bibliographic source, but of the relationship between a lan-
guage and a source. Therefore, we can create a table for the relationship; its primary key is a combina-
tion of the primary keys for Language and Source, and it contains the additional attribute Page Num-
bers where the appropriate page range appears. 
 

Language details 
Language name ISO code Speakers Area 

English eng 309,000,000 Europe 
(etc.)    

 
Bibliographic source 

ID Title Author Year Publisher … 
Ashton47 Swahili grammar (including intonation) Ashton, E.O. 1947 Longmans  

Eth15 Ethnologue: Languages of the world, 
Fifteenth Edition 

Gordon, Raymond G., Jr. (ed.) 2005 SIL International  

(etc.)      
 

Citation (relationship) 
Language ID* Source ID* Pages 

eng Eth15 45 
deu Eth15 42 
swh Ashton47 1-21 
(etc.)   

 
7.1 Enumerated attribute values 
 
There is another important use for tables that do not correspond to an entity: To hold lists of possible 
values for attributes whose value must be taken from a fixed set of choices (enumerated attributes). 
For example, a cross-linguistic database might assign each language to a geographic macro-area from 
the following pre-determined set of options: 
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 Africa 
 Eurasia 
 SE Asia and Oceania 
 Australia and New Guinea 
 North America 
 South America 
 
Using an ordinary text field to hold these values would be inefficient and error prone – the analyst 
would have to type the above values over and over, and nothing would prevent them from entering 
minor variations (“S. America”) or even areas that are not on the above list (e.g., “Central America”). 
For this reason, it is much preferable for the user interface to show the above areas as a fixed set of 
choices from which the analyst must choose, in the form of a drop-down menu, “radio buttons”, or 
perhaps in some other way. 
 
Any system used to create the user interface will provide ways of creating menus, etc., that display a 
list of possible values. But where do these values come from? The set of possible values is part of the 
structure of the database, since it represents the domain of the attribute in question. The best approach 
is to build such information into the database itself, as follows: We create a table whose sole purpose is 
to represent an attribute domain, e.g., “macro-areas”. This table could have a numeric primary key, or 
the names of the macro-areas could themselves be the primary key: 
 

Linguistic Macro-area 
ID Area 
1 Africa 
2 Eurasia 

(etc).  

To use this, we declare the Area attribute of our Language Details table to be a foreign key, pointing to 
this table. The DBMS can ensure that any foreign key value we enter matches a record in the Linguis-
tic Macro-area table; the result is that our database is guaranteed to store only legal values for this at-
tribute. 
 

Language name ISO code Speakers Area* SourceID* 

English eng 309,000,000 2 Eth15 

(etc.)     
 
It is important to realize that the table Linguistic Macro-area is part of the design of the database: The 
six records it contains are defined before data about any language has been entered into the database, 
and it will never grow beyond these six rows as we enter data for different languages – unless we de-
cide to amend our list of macro-areas. In other words, this table does not contain data about any lan-
guage or other entity; it is an auxiliary device representing an attribute domain. 
 
This arrangement is not the simplest one imaginable: Any environment for building our user interface 
could allow us to store the list of possible values in an internal list, without involving a database table. 
We do not recommend this approach, for two important reasons: First, it separates the attribute domain 
information from the database definition, and embeds it in the interface application. If we later need to 
use the database independently of this interface application, the domain information will be lost. For 
example, we might wish to dump our desktop database and create a web interface for it, or to create an 
improved interface application to replace our first effort. In many cases, the database will contain only 
a small numeric value (between 1 and 6, in our example), which the interface application must inter-
pret and display as the name of a macro-area. In the above example, we might end up with just nu-
meric codes for the area, with no indication of which part of the world corresponds to area code 2 – 
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this information can only be retrieved by examining the original user interface, if that is still possible.  
 
The second reason to avoid this approach is that it makes it harder to extend or revise the enumerated 
values during the course of the project. While we can reasonably hope to arrive at a list of macro-areas 
that will not need to be changed during the lifetime of our project, the same is not the case with classi-
fications about which we do not have a clear picture in advance. For example, the Sentence entity in 
our database of reflexives might have an attribute Clause Embedding Type, for the type of complemen-
tation involved in multi-clause sentences. Whatever classification of embedding types we might ini-
tially arrive at, it is quite likely that we will wish to amend or extend it during the course of the pro-
ject, in the face of unexpected constructions from new languages. Such changes should be undertaken 
with care, of course, to avoid invalidating data already in the database; but they are very often neces-
sary in research-oriented databases. Hiding this kind of information in the user interface makes it 
harder to amend; the change typically requires a programmer, and since each interface environment is 
different, it can be difficult to locate someone with the necessary skills. It is easy, on the other hand, to 
arrange for a way to modify the contents of a database table (e.g., by providing a suitable form); even 
if no such provision was made in advance, database tables are well-understood and easier to modify 
than an unfamiliar collection of scripts. 
 
The techniques we have discussed can be combined as needed: For example, we might want an enu-
merated attribute that takes multiple values: E.g., in our reflexives database we wish to indicate the 
alternative meanings that a reflexive construction might have: In addition to being reflexive, for ex-
ample, the Italian reflexive se could have reciprocal, middle, impersonal, or certain other meanings. 
The possible meanings we identify are recorded on a list, as indicated in this section; but since we 
need to allow more than one alternative meaning to be selected, reflexives and meanings are in a 
many-to-many relationship. Accordingly, an intermediate table is used to relate reflexives and possible 
meanings, as described in the previous section. 
 
7.2 Managing enumerated domains 
 
Enumerated attributes are very common in linguistic applications; by creating a table to store the pos-
sible values of each domain, linguistic databases tend to become littered with dozens of small tables 
which can become difficult to manage – especially if we must make provisions for a form that will 
allow editing of the domain values, a means of activating this form, etc. While the approach we have 
described so far is quite commonplace, we will briefly present a refinement that can greatly simplify 
the management of large numbers of enumerated domains: Instead of creating a separate table for each 
domain, create a single table which will hold all enumerated values, listing the domain to which each 
value belongs alongside its ID: 
 

Enumerated Value Definition 
Domain Value ID Value Label 

MacroArea 1 Africa 
MacroArea 2 Eurasia 
MacroArea 3 SE Asia and Oceania 

(etc)   
Embedding 1 Tensed Complement 
Embedding 2 Infinitival complement 
Embedding 3 Paratactic construction 

(etc).   
 
The user interface, then, will provide as possible values of the Area attribute not the entire contents of 
some table, but only the values of the above table that have the Domain “MacroArea”. 
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The above table has a complex primary key consisting of the attributes Domain and Value ID (as indi-
cated by underlining). This ensures that we will not accidentally define the same value ID twice for the 
same domain. Other arrangements are also possible. 
 
In addition to reducing the number of distinct tables, this approach has the considerable advantage that 
a single form, or group of forms, can be used to manage all the enumerated values – even values for 
domain types that have not been created yet. In addition, it is easy to add a column to this table for the 
documentation of each value; this makes it possible to document the meaning of each possible value in 
such a way that it is part of the database. (How this information is presented to the users, of course, is 
up to the designers of the interface). 
 
8. Physical database design and beyond 
 
Logical database design, when properly carried out, converts a high-level model of the information 
domain into a system of tables, keys and relationships that can be directly expressed in the “relational 
algebra” that underlies relational database management systems. The next step is to create an actual 
database that realizes this design (which is in any event preliminary, since it is certain to be modified 
down the road). This is not a trivial step; while all relational DBMSs are based on the same abstract 
mathematical model (the aforementioned relational algebra), they differ in a multitude of details that 
must be taken into account at this stage: The designer must choose from between several “table en-
gines” provided by the DBMS for the actual storage of data, each of which with different features and 
performance benefits; each database attribute must be given an appropriate data type (and maximum 
size, as appropriate), from the many varieties of numeric, text and binary data types provided by the 
DBMS. (See section 4.1). Databases may also have limitations such as being unable to use a certain 
type as a primary key, or extra features not supported by most other databases. From our perspective, 
issues of character encoding are particularly important; for a cross-linguistic database created today, 
use of Unicode is an absolute requirement if the data will include non-Latin text. There is no excuse 
for using a different character encoding method for a cross-linguistic database today. 
 
The database designer should also consider indexes at this stage. An index allows the DBMS to find 
records with a certain value without examining all records in a table, and can provide a noticeable 
speed-up for large tables and complex queries; many DBMSs will automatically index certain kinds of 
attributes (e.g., primary keys), but additional indexes are sometimes useful. Indexes do slightly slow 
down the performance of the DBMS during data entry, since they need to be updated whenever in-
dexed data is inserted or modified. However, this time cost is minuscule; if your database does not run 
a busy airport, you will not notice any delay due to updating indexes. 
 
More generally, this is the stage where performance issues should be considered. We have emphasized 
that the design process should focus on correct design, which is the most important factor in obtaining 
good performance. If this rule is observed, the comparatively small size of linguistic databases means 
that there is usually no need for further attention to performance: With a properly structured database, 
correct queries and a few indexes at the right places, few linguists are likely to encounter performance 
problems in the speed of database queries. If a problem does arise, it is almost certainly due to a flaw 
in the design of the tables or queries. Narrow attempts at “optimizing,” such as storing numeric codes 
instead of text values in the hope that this will reduce processing time, are likely to produce negligible 
runtime improvements; but the added complexity they introduce will require extra time to code and 
debug, which will easily exceed the expected time savings from speeding up the database. 
 
Based on all these considerations, the database developer will build the tables and relationships that 
constitute the database; depending on the DBMS and supporting applications used to manage it, the 
database might be defined with a series of SQL commands, or interactively through a graphical man-
agement interface provided by the database application.33 
                                                 
33 For the open-source stand-alone DBMSs MySQL and Postgresql, there are independently developed applica-
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An actual, working database is only one half of the data management system. The other half is the in-
terface application, or applications, that will be used to get data into and out of the database. The inter-
face application should provide forms, reports and/or other facilities for carrying out all the actions 
that the project needs: Entering data of various kinds, and searching for, displaying and summarizing 
information. We will not attempt even a cursory overview of the issues involved in designing the inter-
face to a database, because these depend, much more than the relational design of the database, on the 
particular needs and procedures of the project; each project will have different needs and will therefore 
require different solutions. 
 
The view of the data presented by the user interface can be quite different from that developed during 
database design, because the two are based on different considerations: While the relational design of 
the database should be based on the internal logic of the data, the design of the user interface should be 
based on what we want to do. In particular, the user interface will often group in one form information 
from different tables, or will present only parts of a table in a form, as appropriate for the use at hand. 
Our database of reflexives might show, next to each sentence, the name and language family of the 
language that the sentence belongs to; this information is drawn from the Language table, by means of 
a suitable query or view. For a questionnaire-based survey, it could be useful to have an application 
that presents each question of the questionnaire, in the correct order. Whether such features are worth 
the effort, or whether they are even a good idea, really depends on the specific needs of a project, in-
cluding the degree to which the questions and answers can be expected to change in the course of data 
collection. 
 
At a minimum, the user interface should display the data in a way that allows it to be easily inter-
preted, and should support the required operations (data entry, modifications, searches). Implementa-
tion features, such as numeric IDs or tables implementing many-to-many relationships, should be hid-
den from the user. Beyond this, the issues are no different from those that arise for any software devel-
opment task; software development is a large and complex topic, and one that we have neither the re-
sources nor the qualifications to offer concrete instruction on. In closing, therefore, we limit ourselves 
to the following general recommendations: 
 

1. Get skilled help if possible; but stay actively involved if you do. 
2. Consult several future users. 
3. Test, and test again. 
4. Anticipate the need for more revisions down the line. 

 
 
9. Some problems, solutions, and limitations 
 
While relational databases provide a powerful framework for data management, they are not equally 
well suited to all uses. In this section we touch on some potentially tricky issues, and perceived or real 
limitations of relational databases. Naturally the discussion in no way exhausts the possible sources of 
trouble. 
 
9.1 Sequences and multiple values 
 
A common source of difficulty involves multiple values. It is not uncommon, in linguistic description, 
to assign multiple values to a single property. For example, a certain construction may have more than 
one information-structure function, a language may be known by more than one name, a verb may 
have more than one meaning. Databases, as we have seen, should assign only one value to each attrib-
ute of a record; if we wish to allow more values, it is necessary either to create duplicate attributes 
(Function2, Function3, etc.) or to use an additional linked table for the multi-valued attribute. Both 
methods introduce complexity to the database that seems out of proportion with the modest goal of 
                                                                                                                                                         
tions that provide a graphical, web-based management interface.  
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occasionally recording multiple values for an attribute.34 
 
Suppose that in our database we normally record one basic word order for each language, but a few 
tricky cases require more than one order to be entered. In this case it might be enough to add an extra 
field Secondary Word Order, or some such. But note that such a field is not interchangeable with the 
first word order field; any queries must explicitly take into account the fact that there are two (or 
more) places to store a word order. Moreover, if there are any attributes that represent properties spe-
cific to each word order, they will need to be duplicated as well. In more complex cases, it is not usu-
ally a good idea to create duplicate attributes.  
 
A variation of this problem arises when it is necessary to store sequences of atomic elements, espe-
cially if the maximum number of elements cannot be specified. This is the case if our database is to be 
used for the analysis of words (as sequences of morphemes), or of sentences (as sequences of words, 
or of words and morphemes). 
 
In designing a table to store the morphological structure of words, we might wish to store the entire 
decomposition of each word in one record; to do so we’d need to place each morpheme in a separate 
column, i.e., we’d need duplicate attributes Morpheme1, Morpheme2, Morpheme3, etc. Because col-
umns need to be pre-defined when the database is designed, it is necessary to assign an arbitrary upper 
limit to the number of morphemes which can make up a word – but what do we do if a word with a 
greater number of constituent morphemes is found?  
 

ID Form Lan-
guage* 

Morp1 Morph2 Morph3 Gloss1 Gloss2 … 

37 wa-li-on-an-a swh wa li on c2 Pst  

(etc).         
 
In this example, this design is in any event inadvisable because each morpheme will need to be de-
scribed by additional attributes, each of which also needs to be duplicated for the maximum possible 
number of morphemes; maintaining duplicates of so many attributes will quickly make it impossible to 
manage the database, or to write useful queries. The solution is provided by the design principles we 
have discussed: Morphemes should be treated as a separate entity type, in a many-to-one relationship 
with words; therefore there should be a separate table, in which each morpheme occupies a separate 
row. This eliminates the duplication of attributes and simultaneously removes the limit on the number 
of morphemes, albeit at the cost of considerable added complexity for the database programmer: The 
table of morphemes must  include information about sequential position (rank), the morpheme itself 
and a foreign key pointing to the word being analyzed – all this in addition to the information we want 
to record about each morpheme. A single word is now spread over several rows of two tables (Word 
and Morpheme), which must be linked to other tables via foreign keys as necessary. The user interface 
must present this information in the familiar form of a string of morphemes, and convert in the oppo-
site direction on data input.35 
 

                                                 
34 For this reason, perhaps, Filemaker departs from the relational model and can handle multiple attribute values 
without requiring an additional table to be created.  
35 Note that this is a simplified example; in a real database of this sort, each morpheme might point to an entry in 
a dictionary of morphemes, so that the gloss and properties of the morpheme –an ‘Recip’, for example, need 
only be stored in one place. The words themselves would probably be linked to a text or sentence, and not di-
rectly to the language. 
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Word 
ID Form Language* … 
37 wa-li-on-an-a swh  

(etc).   
 

Morpheme 
Word ID* Rank Form  Gloss 

36 1 wa c2 
36 2 toto child 
37 1 wa c2 
37 2 li Pst 
37 3 on see 
37 4 an Recip 
37 5 a FV 

(etc).    
 
This design is not as simple as one might have hoped for, but it is necessary if we wish to manage de-
tailed information about each morpheme in our text. If we only need to know where the morphological 
boundaries are, it may be simpler to store each complete word as a single string, and let the user inter-
face manage and display it appropriately. For a concrete example, we turn to the equivalent task in-
volving sentences. Consider a multilingual database that focuses on a certain phenomenon and in-
cludes glossed example sentences. The following structure is often sufficient for the sentences:36 
 

Sentence 
ID Original Morphemic tier Gloss Translation … 

307 Watoto walionana Wa-toto 
 wa-li-on-ana 

c2-child  
c2-Pst-see-Recip-FV 

The children saw each other  

(etc.)      
 
Instead of treating every morpheme as a  separate value, we have allocated one value (attribute) for 
each tier of the sentence. (Note that each table cell contains one text string: they are shown on two 
lines for typographical reasons only). The database interface can parse each tier and display them in a 
word-aligned manner in the customary way; gloss labels used in the gloss tier can even be extracted 
and looked up in a table of glosses, for validation or to display their definition. If all this is handled by 
the user interface application, there is no need to burden the database schema by modeling each mor-
pheme as a distinct value. In the web interface, the underlined gloss labels are hyperlinks that bring up 
a definition from a table of glosses: 
 

Swahili (swh), strategy: -ana  ID 544 
 

(ok) wa-toto wa-li-sem-an-a 
 c2-child c2-Pst-speak-Recip-FV 
 The children spoke to each other 

 
The downside of this approach is that we lose some of the power of relational databases. For example, 
we must use a full-text search to find sentences in which some morpheme occurs; while text searches 
are more than fast enough for a linguistic database on today’s computers, they are slower than relying 

                                                 
36 We suppress other properties of the sentence that we may be interested in. 
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on an index, and might lead to slower performance for very large or complex applications. More im-
portantly, it is no longer possible to store detailed information for each morpheme in a word or sen-
tence. For such uses, the more complex design presented above is necessary.  
 
Note also that we have reduced the complexity of the database structure by shifting some responsibili-
ties to the user inteface. Our interface application must ensure, for example, that the sentence tiers 
contain equal numbers of words and morphemes. And if a new user interface is needed at some point 
(perhaps to convert a desktop database into a web database, or to replace an obsolete web interface), 
this functionality will have to be implemented again. 

The right design choice depends on the nature of our interest in the data: If our database is intended to 
support the detailed analysis of primary data, it is probably a good idea to fully represent the mor-
phemic decomposition in the relational design. If our database is targeted to some morphosyntactic 
phenomenon (e.g., reflexives) and the sentences serve as supporting material, the simpler design just 
sketched may well be sufficient. 
 
9.2 Boolean attributes in theory and practice 
 
Boolean (true/false) attributes are frequently used in typological databases, where many fields may 
contain information about whether a given language has a certain property or not. It is also not un-
common in linguistic theory to model a multi-valued property as a combination of binary features; for 
example, Chomsky and Halle (1968) treat the three-way vowel height opposition low, mid, high in 
terms of two features (since two binary features can occur in four different combinations, one of the 
four must excluded from occurring); Goedemans and Van der Hulst (this volume) classify primary ac-
cent placement patterns in terms of seven binary parameters; etc. These analyses were motivated  by 
good linguistic reasons (theoretical and/or empirical), and linguists who use them in their work may 
well decide to design their database along the same lines. Care should be taken to document the behav-
ior and meaning of the novel parameters (especially for a publicly accessible database), since their 
meaning will not be obvious to a viewer unfamiliar with the framework in question. Often the data can 
be presented in terms of both the formal features and the traditional classification (which the database, 
or the interface application, should be able to compute from the formal features). 
 
While decomposing a linguistic property into features can be desirable for linguistic reasons, the tech-
nique should never be used purely as an attempt to “optimize” the performance of the database: A 
property that can take a restricted number of values should be modeled as an enumerated attribute, 
using the methods we have already discussed. Working with a single multi-valued attribute is simpler, 
more convenient and more intuitive; and it is in fact faster than a query that must address several arti-
ficial Boolean features in order to reconstruct a multi-valued attribute value.37 
 
A related technique is to encode a multi-valued property as a collection of binary “characters,” Boo-
lean variables that each determine whether the property has a particular value; e.g., the property Basic 
Word Order could be represented as the Boolean variables “BWO = SVO”, “BWO = SOV”, and so on 
for all seven possible word orders (we include the word order “Free” among the possibilities). In this 
case the database, or the analyst, needs to ensure that only one of the seven can take the value True for 
any language (unless, of course, the project defines “basic word order” in such a way that a language 
could have more than one). While characters are useful for certain types of statistical analysis, we rec-
ommend always storing such properties in non-decomposed form, as an enumerated attribute; if char-

                                                 
37 See Dunn et al. (2003) for an example of the decomposition of typological features as binary characters, and 
Wichmann and Kamholz, (in press) for additional comments on the dangers of decomposing multi-valued prop-
erties.  
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acters are needed, it is straightforward to generate them dynamically with an SQL query.38 
 
The general principle we have advocated applies here as well: The database should be designed so as 
to model the organization of the data (to the best of our understanding of it). While it may be justifi-
able to simplify the design in respects that are not important to our needs, modifications that make the 
database more complex than required by its conceptual model are never a good idea. 
 
9.3 Design changes 
 
The most important characteristic of a database is that it is intended to manage a structured collection 
of data. While we have seen that a database consisting of tables and relations can support an interface 
that is not at all table-like, it is still true that a database must be carefully designed and structured be-
fore it is put into use. This presents problems for the creators of research databases, who might expect 
to work with the data for some time in order to develop an understanding of how it should be analyzed 
and structured. In such cases, it is important not to build restrictions into the software, and especially 
into the database model, that may conflict with the eventual analysis that will need to be expressed. 
(This is another reason that unnecessary “optimizations” should be avoided). Imagine a cross-
linguistic database that includes phonotactic information; the database might have been built on the 
assumption that it is enough to characterize each language by its maximal syllable template (e.g., 
CVN), which can be stored as a simple attribute in the Language table. But suppose that the research-
ers, during the course of their work, find it necessary to record separate data about each phonotactic 
pattern in a language (e.g., to study the properties of CV and CVN separately). As we have just seen, 
this requires syllable templates to become a separate entity that is in a many-to-one relationship with 
languages. This will involve a fundamental change in the design of the database. 
 
A simpler problem can arise if a database includes a hard-coded list of enumerated values; e.g., verb 
argument types such as direct object, indirect object, prepositional phrase, etc. In the course of data 
collection, the users of this database might encounter languages that require an argument type that is 
not on this list; if the programmer who created the database is gone and has not arranged for an easy 
way to extend the list, considerable inconvenience will result. (The design sketched in section 7.2 is an 
effective way to avoid this problem). 
 
9.4 Hierarchical structure 
 
An important limitation of relational databases is that, by the nature of the “relational algebra” they are 
based on, they are not very good at managing recursive hierarchical structure. Parsed syntactic trees, in 
particular, are not a good fit for the kinds of queries a relational database can support. In such cases the 
parsed tree might be stored in a database, perhaps along with indexing information, but many kinds of 
searches would have to rely on functionality outside the database proper. Other strategies are needed if 
representing hierarchical information is important on a project (see Van Halteren 1997:42-46 for dis-
cussion). Similarly, database queries are not the most convenient tool for large text corpora (parsed or 
unparsed). In such cases, especially for small projects, it may be most straightforward not to rely on a 
DBMS at all. 
 

                                                 
38 If the basic word order is stored in a field called Order, we can generate characters named charSVO, charSOV, 
etc., as follows (consult an SQL manual for documentation on the CASE statement). 
 

SELECT *,  
    CASE Order WHEN ‘SVO’ THEN 1 ELSE 0 END charSVO, 
     CASE Order WHEN ‘SOV’ THEN 1 ELSE 0 END charSOV, 
     . . . 
 FROM “Language Details”; 
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10.  Conclusion 
 
This very brief introduction could not hope to provide a complete guide to designing or building data-
bases. We have focused on conceptual rather than practical issues, especially those which in our opin-
ion are easily overlooked during the hands-on process of learning one’s way around a database appli-
cation. Our goal was not so much to allow the reader to be self-sufficient as to make it possible to 
think about the process of database design at the right level of abstraction. We hope that this will be of 
help to readers who can already create simple databases (e.g., with Microsoft Access or MySQL and 
PHP) but lacked the conceptual perspective developed here, as well as to those who need to discuss 
the design of their database with a programmer. 
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